Answer: b.) they tend to lose electrons to gain stability
Explanation:
- <span>The </span>speed of light<span> is the </span>speed<span> electromagnetic waves travel. The </span>speed of light<span> is 3.0 x 108 m/s in space. The </span>speed of light<span> is the same in all matter. The </span>speed<span> of higher frequency </span>light <span>slows down more than lower frequency </span>light<span> in matter.</span>
Answer : The balanced equation is,

Explanation :
According to the Bronsted Lowry concept, Bronsted Lowry-acid is a substance that donates one or more hydrogen ion in a reaction and Bronsted Lowry-base is a substance that accepts one or more hydrogen ion in a reaction.
The balanced chemical reaction will be,

In this reaction, hydrofluoric acid is act as a Bronsted Lowry-acid because it donate one hydrogen ion to
and
is act as a Bronsted Lowry-base because it accept one hydrogen ion from
.
Answer:
100N
Explanation:
Given parameters:
Mass of the bowling ball = 20kg
Acceleration = 5m/s²
Unknown:
Amount of force applied = ?
Solution:
To solve this problem, we apply newton's second law of motion.
Force = mass x acceleration
Now insert the parameters and solve;
Force = 20 x 5 = 100N
The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
Boyle's law says, PV=RT
- Here P represents the pressure, V represents the volume and T represents the temperature. R is a constant. The volume of an ideal gas is inversely proportional to its pressure if the temperature is constant.
- When a bubble is present in deep water it has water pressure and atmospheric pressure. Then the Volume increases when water pressure raises which is proportional to the depth reduces.
- But we should not finalize the volume of the bubble will be four-time as great as at the top than the bottom. if the bottom of the lake is at four atmospheres, the temperature will not be equal to the top.
- If the bubble travels from the bottom to the top or vice-versa, it's going to lose or gain heat in a way that must be quite hard to measure.