Answer:
The answer to your question is: V2 = 1.94 l
Explanation:
Data
V1 = 2.42 l
T1 = 25°C
P1 = 1 atm
V2 = ?
T2 = 25 -11 = 14°C
P2 = 1(0.7) = 0.7 atm
Formula
P1V1/T1 = P2V2/T2
Clear V2 from the equation
V2 = P1V1T2/ P2T1
V2 = (1)((2.42)(14) / (0.7)(25)
V2 = 33.88 / 17.5
V2 = 1.94 l
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹
2H₂₍g₎ + O₂ ₍g₎→ 2H₂O
138 mol H₂ × (2 mol H₂O ÷ 2 mol H₂)= 138 mol H₂O
64 mol O₂ × (2 mol H₂O ÷ 1 mol O₂)= 128 mol H₂O
128 mol H₂O
Hello.
<span>It makes a longitudinal wave because it stretches and compresses while as it slithers foward.
</span>
Have a nice day