Answer:
4 M
Explanation:
Molarity can be represented by the following ratio:
Molarity = moles / volume (L)
Since you have been given both the mass and volume, you can plug the values into the equation and solve for molarity.
Molarity = moles / volumes
Molarity = 2.0 moles / 0.50 L
Molarity = 4 M
Answer:
1.73 Molar
Explanation:
The formula is Molarity=moles of solute/liters of solution, which can be written in whatever way you prefer, and examples include: M=N/V or M=mol/L.
M=N/V
M= 
Divide 5.63 by 3.25. When you calculate this, you get 1.73, therefore your answer is 1.73 molar.
Answer:
A<u> covalent bond</u> will hold them together.
Explanation:
The two bromine atoms will share electrons to build a stronger bond and have a full valence outer shell (which makes them stable).
Hope this helps!
Answer:
Hi there!
The correct answer to this question is: electrons enter orbitals of lowest energy first.
The equilibrium constant k is actually the ratio of the
concentration of the products over the concentration of reactants at equilibrium. So if the
concentration of products < concentration of reactants, therefore the
constant k will be small. But if the concentration of products >
concentration of reactants, the constant k will be large. In this case the
value is too small (x10^-19), therefore we can say that the reaction favors the
reactant side:
the equilibrium lies far to the left