Answer:
<em>Elevator That Is Moving Downwards At A Constant Speed Of 4.9 M/S. What Is The Magnitude Of The Net Force Acing On The Student?</em>
<em>This problem has been solved!</em>
<em>This problem has been solved!See the answer</em>
<em>This problem has been solved!See the answerA student weighs 1200N. They are standing in an elevator that is moving downwards at a constant speed of </em><em>4.9 m/s. What is the magnitude of the net force acing on the student?</em>
Mass x SH x °C (or K) ΔT
= 75g x 0.45J/g/K x 6.0 ΔT
= 202.5 Joules of heat absorbed.
(202.5J / 4.184J/cal = 48.4 calories).
I guess that is the answer
Answer:
okay with you if you want to
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'