Mass per cubic metre so kg/m3. Temperature may give different results.
Answer:
Recall that the electric field outside a uniformly charged solid sphere is exactly the same as if the charge were all at a point in the centre of the sphere:

lnside the sphere, the electric field also acts like a point charge, but only for the proportion of the charge further inside than the point r:

To find the potential, we integrate the electric field on a path from infinity (where of course, we take the direct path so that we can write the it as a 1 D integral):

=![\frac{q}{4\pi e_{0} } [\frac{1}{R} -\frac{r^{2}-R^{2} }{2R^{3} } ]](https://tex.z-dn.net/?f=%5Cfrac%7Bq%7D%7B4%5Cpi%20e_%7B0%7D%20%7D%20%5B%5Cfrac%7B1%7D%7BR%7D%20-%5Cfrac%7Br%5E%7B2%7D-R%5E%7B2%7D%20%20%7D%7B2R%5E%7B3%7D%20%7D%20%5D)
∴NOTE: Graph is attached
<span>` You can consider T to be in units of seconds/step. Frequency is the inverse of period, so
1/T = frequency and has units of steps per second. There will be 60 times as many steps in a minute.</span>
Answer:
9.8 m/s/s
Explanation:
The numerical value, in meters per second squared, of the acceleration of an object experiencing true free fall is 9.8 m/s/s. This is called the acceleration due to gravity.
Answer:
The wall is 680 meter away from the person.
Explanation:
Given data
Speed of sound = 340 
Given that Persons said hello toward the opposite side she has an echo hello 4 seconds later means it takes 2 seconds for the sound to reach the wall & again 2 seconds to reach the persons ear.
Therefore the distance between the person & wall is
D = speed × Time
D = 340 × 2
D = 680 meter
Therefore the wall is 680 meter away from the person.