400 * 3 = 1200
A jet can travel 1200 minutes for 3 seconds
To solve this problem we will apply the concepts related to the thermal efficiency given in an engine of the Carnot cycle. Here we know that efficiency is given under the equation

Where,
Temperature of Cold Body
Temperature of Hot Body
= Efficiency
According to the statement our values are:


Replacing we have that




Therefore the temperature of the heat source is 300K
Answer:
20 J/g
Explanation:
In this question, we are required to determine the latent heat of vaporization
- To answer the question, we need to ask ourselves the questions:
What is latent heat of vaporization?
- It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
- It is the amount of heat absorbed by a substance as it boils.
How do we calculate the latent heat of vaporization?
- Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.
In this case;
- Mass of the substance = 20 g
- Heat absorbed as the substance boils is 400 J (1000 J - 600 J)
Thus,
Latent heat of vaporization = Quantity of Heat ÷ Mass
= 400 Joules ÷ 20 g
= 20 J/g
Thus, the latent heat of vaporization is 20 J/g
- Height (h) = 10 m
- Density (ρ) = 1000 Kg/m^3
- Acceleration due to gravity (g) = 10 m/s^2
- We know, pressure in a fluid = hρg
- Therefore, the pressure exerted by a column of fresh water
- = hρg
- = (10 × 1000 × 10) Pa
- = 100000 Pa
<u>Answer</u><u>:</u>
<u>1000</u><u>0</u><u>0</u><u> </u><u>Pa</u>
Hope you could understand.
If you have any query, feel free to ask.
Answer:
a) yield strength

b) modulus of elasticity
strain calculation

strain for offset yield point

=0.0046-0.002 = 0.0026
now, modulus of elasticity
= 184615.28 MPa = 184.615 GPa
c) tensile strength

d) percentage elongation

e) percentage of area reduction