Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:
Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,
Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:
Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is
Replacing we have that,
Therefore there is a loss of fluid in the container of 0.475L
Answer:
health factors that could harm you or your offspring
Answer:
Maximum height of rocket = 2538.74 m
Explanation:
We have equation of motion s = ut + 0.5 at²
For first 5 seconds
s = 0 x 5 + 0.5 x 40 x 5² = 500 m
Now let us find out time after 5 seconds rocket move upward.
We have the equation of motion v = u + at
After 5 seconds velocity of rocket
v = 0 + 40 x 5 = 200 m/s
After 5 seconds the velocity reduces 9.8m/s per second due to gravity.
Time of flying after 5 seconds
Distance traveled in this 20.38 s
s = 200 x 20.38 - 0.5 x 9.81 x 20.38² = 2038.74 m
Maximum height of rocket = 500 +2038.74 = 2538.74 m
Answer:
Explanation:
For the simple pendulum problem we need to remember that:
,
where is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:
,
where is the angular frequency.
There is also an equation that relates the oscillation period and the angular frequeny:
,
where T is the oscillation period. Now, we can easily solve for L: