Work is calculated by multiplying force by the distance that the object had moved. The applied force is 60 N, moving the object by 10 m. Thus, the work does is 600 J. For the friction force which is equal to,
100N x 0.250 = 25.0 N
the work done is,
W = (60 N - 25 N) x 10 m = 350 J
The kinetic energy of the box can be equated to this force. Thus, the answer is also 350 J.
Answer:
a) m = 69.0 kg
b) release some gas in the opposite direction to the astronaut's movement
Explanation:
a) Let's use Newton's second law
F = m a
m = F / a
m = 60.0 / 0.870
m = 69.0 kg
b) when we exert a force on the astronaut it acquires a momentum po, as the astronaut system plus spacecraft is isolated, the momentum is conserved
p₀ = p_f
m v = M v '
v ’=
so we see that the ship is moving backwards, but since the mass of the ship is much greater than the mass of the astronaut, the speed of the ship is very small.
One method to avoid this effect is to release some gas in the opposite direction to the astronaut's movement so that the initial momentum of the astronaut plus the gas is zero and therefore no movement is created in the spacecraft.
The Answer is:
O 3s
Hope you got it right.
Answer:
It should fly 8° to west of south at 430km/h
Explanation:
According to the diagram. X components for both velocities must have the same magnitude in order to get the resultant velocity due south.
Solving for α:
α = 8.03°
Answer:
<h3>The answer is 4.53 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 62 g = 0.062 kg
velocity = 73 m/s
We have
momentum = 0.062 × 73 = 4.526
We have the final answer as
<h3>4.53 kgm/s</h3>
Hope this helps you