Technically yes you are i think
Answer:
the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Explanation:
Given that;
weight of vehicle = 4000 lbs
we know that 1 kg = 2.20462
so
m = 4000 / 2.20462 = 1814.37 kg
Initial velocity
= 60 mph = 26.8224 m/s
Final velocity
= 30 mph = 13.4112 m/s
now we determine change in kinetic energy
Δk =
m(
² -
² )
we substitute
Δk =
×1814.37( (26.8224)² - (13.4112)² )
Δk =
× 1814.37 × 539.5808
Δk = 489500 Joules
we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule
so
Δk = 489500 / 3.6 × 10⁶
Δk = 0.13597 ≈ 0.136 kWh
Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Answer: 10.3m/s
Explanation:
In theory and for a constant velocity the physics expression states that:
Eq(1): distance = velocity times time <=> d = v*t for v=constant.
If we solve Eq (1) for the velocity (v) we obtain:
Eq(2): velocity = distance divided by time <=> v = d/t
Substituting the known values for t=15s and d=155m we get:
v = 155 / 15 <=> v = 10.3
The cold air sinks as it is heavier