The concept that we need here to give a proper solution is mutual inductance.
The mutual inductance is given by the expression

Where,
I = current
N = Number of turns
Flux through the solenoid.
Part A) Then we have in our values that,



Replacing in the equation,


Part B) Here is required the Flux, then using the same expression we have that

We conserve the same value for the Inductance but now we have a current of 2.6, then


Therefore the flux in Solenoid 1 is 
Both carts experience the same force but Cart A has a greater speed after the recoil.
The given parameters;
- <em>Mass of the cart A = 0.4 kg</em>
- <em>Mass of the cart B = 0.8 kg</em>
Apply the principle of conservation of linear momentum to determine the velocity of the carts after collision;

According to Newton's third law of motion, action and reaction are equal and opposite. The force exerted on cart A is equal to the force exerted on cart B but in opposite direction.

Thus, the correct statement that compares the motion and forces acting on the two carts is "Both carts experience the same force but Cart A has a greater speed after the recoil."
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
c) It increases by a factor of 8
Explanation:
According to Faraday's law (and Lenz' law), the induced EMF is given as the rate of change of magnetic flux.
Mathematically:
V = -dФ/dt
Magnetic flux, Ф, is given as:
Ф = BA
where B = magnetic field strength and A = Area of object
Hence, induced EMF becomes:
V = -d(BA)/dt or -BA/t
If the magnetic field is increased by a factor of 4, (
) and the time required for the rod to move is decreased by a factor of 2 (
), the induced EMF becomes:


The EMF has increased by a factor of 8.
Answer:
the magnitude of Vpg = 493.711 km/h
Explanation:
given data
speed Vpg = 560 km/h
speed Vwg = 80 km/h
solution
we get here magnitude of the plane velocity w.r.t. ground is
we know that the Vpg = Vpw + Vwg .....................1
writing the component of the velocity that is
Vpw = (0 km/h î - 560 km/h j )
Vwg = (80 cos 45 km/h î + 80 sin 45 km/h j)
adding these
Vpg = (0+80 cos 45 km/h ) î + ( -560 + 80 sin 45 km/h j)i
Vpg = (42.025 ) î (-491.92 km/h)j
now we take magnitude
the magnitude of Vpg = 
the magnitude of Vpg = 493.711 km/h