Answer:
The gas argon does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Explanation:
The dry atmosphere is composed almost entirely of nitrogen (in a volumetric mixing ratio of 78.1%) and oxygen (20.9%), plus a series of oligogases such as argon (0.93%), helium and gases of greenhouse effect such as carbon dioxide (0.035%) and ozone. In addition, the atmosphere contains water vapor in very variable amounts (about 1%) and aerosols.
Greenhouse gases or greenhouse gases are the gaseous components of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at certain wavelengths of the infrared radiation spectrum emitted by the Earth's surface, the atmosphere and clouds . In the Earth's atmosphere, the main greenhouse gases (GHG) are water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3 ). There is also in the atmosphere a series of greenhouse gases (GHG) created entirely by humans, such as halocarbons (compounds containing chlorine, bromine or fluorine and carbon, these compounds can act as potent greenhouse gases in the atmosphere and they are also one of the causes of the depletion of the ozone layer in the atmosphere) regulated by the Montreal Protocol. In addition to CO2, N2O and CH4, the Kyoto Protocol sets standards regarding sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).
The difference between argon and greenhouse gases such as CO2 is that the individual atoms in the argon do not have free bonds and therefore do not vibrate. As a consequence, it does not reach a state of vibrational excitation when infrared radiation strikes this gas.
They're based on hydrogen.
Answer:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Explanation:
According to this question, sodium carbonate reacts with sulfuric acid to form aqueous sodium sulfate, carbon dioxide and water. The balanced chemical equation is as follows:
Na2CO3(aq) + H2SO4(aq) → Na2SO4(aq) + CO2(g) + H2O(l)
- Next, split compounds that are aqueous into ions.
2Na+(aq) + CO32-(aq) + 2H+(aq) + SO42-(aq) → 2Na+(aq) + SO42-(aq) + CO2(g) + H2O(l)
- Next, we cancel out the spectator ions, which are ions that remain the same in the reactants and products side of a chemical reaction. The spectator ions in this equation are 2Na+(aq) and SO42-(aq).
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
- Hence, the balanced ionic equation is as follows:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
First, we have to get:
1- The heat required to increase T of ice from -50 to 0 °C:
according to q formula:
q1 = m*C*ΔT
when m is the mass of ice = mol * molar mass
= 1 mol * 18 mol/g
= 18 g
and C is the specific heat capacity of ice = 2.09 J/g-K
and ΔT change in temperature = 0- (-50) = 50°C
by substitution:
∴q1 = 18 g * 2.09 J/g-K *50°C
= 1881 J = 1.881 KJ
2- the heat required to melt this mass of ice is :
q2 = n*ΔHfus
when n is the number of moles of ice = 1 mol
and ΔHfus = 6.01 KJ/mol
by substitution:
q2 = 1 mol * 6.01 KJ/mol
= 6.01 KJ
3- the heat required to increase the water temperature from 0°C to 60 °C is:
q3 = m*C*ΔT
when m is the mass of water = 18 g
C is the specific heat capacity of water = 4.18 J/g-K
ΔT is the change of Temperature of water = 60°C - 0°C = 60°C
by substitution:
∴q3 = 18 g * 4.18 J/g-K * 60°C
= 4514 J = 4.514 KJ
∴the total change of enthalpy = q1+q2+q3
= 1.881 KJ +6.01 KJ + 4.514 KJ
= 12.405 KJ