1) <u>Stereo-selective (or enantioselective)</u> reactions form predominately or exclusively one enantiomer.
2) Epoxidation is the addition of a single oxygen atom to an alkene to form an epoxide.
3) <u>Hydrogenation (or reduction)</u> of an alkene forms an alkane by addition of H₂.
4) <u>Dihydroxylation</u> is the addition of two hydroxy groups to a double forming, a 1,2-diol or glycol.
5) <u>oxidative</u> cleavage of an alkene breaks both the σ and π bonds of the double bond to form two carbonyl groups.
6) <u>Regioselective</u> reactions form predominately or exclusively one constitutional isomer.
7) <u>Syn</u> dihydroxylation results when an alkene is treated KMnO4 or OsO4, where each reagent adds two oxygen atoms to the same side of the double bond.
They will attract each other when brought close but when they touch the glass rod will become a negative charge and will repel each other
Pure Substances cannot be separated easily or, sometimes at all.
I hope this is the answer you were looking for and that it helps!! :)
Elements which appear in the same column have similar properties (periodicity). For example, all of the elements in group XVII (17), the Halogens, all react in a similar fashion; they all like to attract one additional electron and form a -1 anion.