Answer:
D. Grams liquid x mol/g x delta Hfreezing
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to reason that the stoichiometry used to calculate energy released when a mass of liquid freezes, involves the grams of the liquid, the molar mass of the liquid, as given in all the group choices, and the enthalpy of freezing because that is the process whereby a liquid goes solid.
In such a way, we infer that the correct factor would be D. Grams liquid x mol/g x delta Hfreezing which sometimes is the negative of the enthalpy of fusion as they are contrary processes.
Regards!
Answer:
CCl4 - Nonpolar
CH3OH - polar
NH3 - polar
CS2 - Nonpolar
Explanation:
One important thing that we should know is that polarity has to do with the presence of a resultant dipole moment in a molecule.
Dipole moment is a vector quantity, This means that its direction is also taken into account when discussing the dipole moment of molecules.
Hence, symmetrical molecules such as CS2 and CCl4 are non-polar even though they have polar bonds because their dipoles cancel out(zero resultant dipole moment).
On the other hand, NH3 and CH3OH are non-symmetrical molecules hence they possess an overall dipole moment and are polar molecules.
5.6 Al(OH)3
5.6 Al, 16.8 O, 16.8 H
16.8 mols of oxegyn in 5.6 mols of Al(OH)3
Answer:
BRAINLIEST?
Explanation:
Ammonia is a typical weak base. Ammonia itself obviously doesn't contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. My findings said that ammonia is a weak base, potassium hydroxide is a strong base, vinegar is a weak acid and ethyl alcohol is a weak acid.
Vinegar and ethyl alcohol are eliminated as they are acids. The question is on bases.... Potassium hydroxide is a strong base. So we are left with ammonia, being a weak base.
A is your answer