The efficiency of a light source is the percentage of its energy input that gets radiated as visible light if some of the blue light in an led is used to cause a fluorescent material to glow the overall efficiency of the LED decreases.
How efficient is LED?
Different wavelengths that correlate to different visible colours are used in LED light therapy. Various shades pierce the skin at different rates.
- Your skin's outermost layer is impacted by blue light.
- Yellow light is more enveloping.
- Red light penetrates your skin more deeply.
- The deepest penetrating light is near-infrared.
Different LED hues have various effects. For instance, according to experts red LED light therapy has the potential to reduce inflammation and boost collagen formation, which declines with age and is crucial for maintaining youthful-looking skin.
Acne-causing bacteria may be destroyed by a blue LED light therapy (P. acnes).
Hence the answer is the overall efficiency of the LED decreases.
Learn more about wavelength here,
brainly.com/question/1263539
# SPJ4
Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
formula: <u>Mass</u>
Density x volume
2a) m=10kg v=0.3m³
10÷0.3=33.3 kg/m
2b) m = 160 kg V=0.1m³
160÷0.1=1600 kg/m
2c) m = 220 kg V = 0.02m³
220÷0.02=11000 kg/m
A wooden post has a volume of 0.025m³ and a mass of 20kg. Calculate its density in kg/m.
density = volume ÷ mass
20÷ 0.025=800 kg/m
Challenge: A rectangular concrete slab is 0.80m long, 0.60 m wide and 0.04m thick. Calculate its volume in m³.
Formula : Length x width x height = Volume
0.80 x 0.60 x 0.04 = 0.0192m³
B) The mass of the concrete slab is 180 kg. Calculate its density in kg/m.
density = volume ÷ mass
180 ÷ 0.0192 = 9375 kg/m
Explanation:
The increase in the body temperature of pronghorn, the fastest North American animal, results from the chemical energy of the pronghorn converting into kinetic energy with efficiency less than 100%. The remaining energy is converted into heat energy. Thus, raising the temperature of pronghorn.
Due to the chemical energy it gains both kinetic and heat energy.
Answer:
9 and 3 N
Explanation:
Forces in the same direction sum up to produce the resultant force;
One force subtract the other will give the resultant force when they are in opposite directions;
Lets say one direction is forwards and the opposite backwards;
We have one force, let's say force A, in the forwards direction and another force, force B, acting in the same (forwards) or opposite (backwards) direction;
If B is acting in the same direction, then the resultant force (in this case) will be as follows:
A + B = 12
If B is acting in the opposite direction, then the resultant force will be as follows:
A - B = 6
Summing the two equations will allow us to solve for A:
A + B + (A - B) = 12 + 6
2A = 18
A = 9
Substitute this into either of the above equations and we can solve for B:
(9) - B = 6
B = 9 - 6
B = 3