The balanced equation would be 
<h3>Electrochemical equations</h3>
Zn reacts with Cu solution according to the following equation:

In the reaction,
is reduced according to the following: 
While Zn is oxidized according to the following: 
Thus, giving the overall equation of; 
More oxidation-reduction equations can be found here: brainly.com/question/13699873
#SPJ1
Answer : Broadly solids are divided into three categories;
i) Crystalline solids have a regular definite structure, in which the particles pack in a repeating pattern from one edge of the solid to the other.
ii) Amorphous solids have a random structure, with little unorganized pattern long-range order.
iii) Polycrystalline solids are those where an aggregate which consists of a large number of small crystals or grains in which the structure is regular, but the crystals or grains are found to be arranged in a random fashion.
Also solids can be divided into 3 more categories according to their bonds;
i) Covalent solids, like diamond, which forms crystals that can be viewed as a single giant molecule made up of an almost endless number of covalent bonds.
ii) Ionic solids are basically salts, such as NaCl, in which the molecules are held together by the strong force of attraction between ions of opposite charge.
iii) Metallic solids are found in metals which have the force of attraction between atoms of metals, such as copper and aluminum, or alloys, such as brass and bronze, are metallic bonds.
Answer:
The answer is B. Atomic Mass
Water was bored. He decided to go through the water cycle. He flew in the air as gas, then condensed into water again, and then rolled down into a river, only to find out that he would be stuck doing it forever
. The end
Answer:
Explanation:
Given parameters :
Volume of solution = 100mL
Absorbance of solution = 0.30
Unknown:
Concentration of CuSO₄ in the solution = ?
Solution:
There is relationship between the absorbance and concentration of a solution. They are directly proportional to one another.
A graph of absorbance against concentration gives a value of 0.15M at an absorbance of 0.30.
The concentration is 0.15M
Also, we can use: Beer-Lambert's law;
A = ε mC l
where εm is the molar extinction coefficient
C is the concentration
l is the path length
Since the εm is not given and assuming path length is 1;
Then we solve for the concentration.