Answer:
NO would form 65.7 g.
H₂O would form 59.13 g.
Explanation:
Given data:
Moles of NH₃ = 2.19
Moles of O₂ = 4.93
Mass of NO produced = ?
Mass of produced H₂O = ?
Solution:
First of all we will write the balance chemical equation,
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will compare the moles of NO and H₂O with ammonia from balanced chemical equation:
NH₃ : NO NH₃ : H₂O
4 : 4 4 : 6
2.19 : 2.19 2.19 : 6/4 × 2.19 = 3.285 mol
Now we will compare the moles of NO and H₂O with oxygen from balanced chemical equation:
O₂ : NO O₂ : H₂O
5 : 4 5 : 6
4.93 : 4/5×4.93 = 3.944 mol 4.93 : 6/5 × 4.93 = 5.916 mol
we can see that moles of water and nitrogen monoxide produced from the ammonia are less, so ammonia will be limiting reactant and will limit the product yield.
Mass of water = number of moles × molar mass
Mass of water = 3.285 mol × 18 g/mol
Mass of water = 59.13 g
Mass of nitrogen monoxide = number of moles × molar mass
Mass of nitrogen monoxide = 2.19 mol × 30 g/mol
Mass of nitrogen monoxide = 65.7 g
Weight percentage of nitrogen can be calculated using the following rule:
weight percentage of nitrogen = (weight of nitrogen / weight of urea) x 100
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of nitrogen = 14 grams
molecular mass of hydrogen = 1 grams
molecular mass of oxygen = 16 grams
therefore:
mass of nitrogen in urea = 2(14) = 28 grams
mass of urea = 12 + 2(14) + 4(1) + 16 = 60 grams
Substitute with the masses in the equation to get the percentage:
weight percentage of nitrogen = (28/60) x 100 = 46.667%
Yes that is true, when energy is transformed energy is not destroyed.
Repeatable
If it’s repeatable and you get the same answer constantly then it’s a good and accurate experiment