Answer:
A. -61/9
Step-by-step explanation:
(7x + 28) + (7x +28) = 5x - 5 . . . . . . . given equation
14x +56 = 5x -5 . . . . . . . . . . . . . . . . . collect terms
9x = -61 . . . . . . . . . . . . . . . . . . . . . . . . subtract 5x+56
x = -61/9 . . . . . . . . . . . . . . . . . . . . . . . . divide by the coefficient of x
X=21
If the triangle are similar then you can divide.
75 divided by 25 is 3
72 divided by 21 is 3
so that means if you take 7 times 3 you will get 21
15 - natural (1,2,3...15....) and integers (...-2,-1,0, 1,2,...15,...)
We have to add 3 2/3 + 2 2/3 using fraction strips. 3 2/3 and 2 2/3 are the mixed numbers. The mixed numbers consists of a whole number and a fraction. If we want to add those numbers we shoukld change them into improper fractions: 3 2/3 = ( 3 * 3 + 2 ) / 3 = 11 / 3; 2 2/3 = ( 2 * 3 + 2 ) / 2 = 8 / 3. Finally: 11 / 3 + 8 / 3 = ( 11 + 8 ) / 3 = 20 / 3 = 6 2/3. Answer: You reneme it turning them into improper fractions<span>. </span>
Answer:
Therefore, the volume of the cone is V=4π.
Step-by-step explanation:
From task we have a circular cone with radius 2 m and height 3 m. We use the disk method to find the volume of this cone.
We have the formula:

We know that r=2 and h=3, and we get:
![V=\int_0^3\pi \cdot \left(\frac{2}{3}x\right)^2\, dx\\\\V=\int_0^3 \pi \frac{4}{9}x^2\, dx\\\\V= \frac{4\pi}{9} \int_0^3 x^2\, dx\\\\V= \frac{4\pi}{9} \left[\frac{x^3}{3}\right]_0^3\, dx\\\\V= \frac{4\pi}{9}\cdot 9\\\\V=4\pi](https://tex.z-dn.net/?f=V%3D%5Cint_0%5E3%5Cpi%20%5Ccdot%20%5Cleft%28%5Cfrac%7B2%7D%7B3%7Dx%5Cright%29%5E2%5C%2C%20dx%5C%5C%5C%5CV%3D%5Cint_0%5E3%20%5Cpi%20%5Cfrac%7B4%7D%7B9%7Dx%5E2%5C%2C%20dx%5C%5C%5C%5CV%3D%20%5Cfrac%7B4%5Cpi%7D%7B9%7D%20%5Cint_0%5E3%20x%5E2%5C%2C%20dx%5C%5C%5C%5CV%3D%20%5Cfrac%7B4%5Cpi%7D%7B9%7D%20%5Cleft%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%5Cright%5D_0%5E3%5C%2C%20dx%5C%5C%5C%5CV%3D%20%5Cfrac%7B4%5Cpi%7D%7B9%7D%5Ccdot%209%5C%5C%5C%5CV%3D4%5Cpi)
Therefore, the volume of the cone is V=4π.