When it comes to optics, Snell's law is the basic formula to be used. If you notice, when light hits the water, the light does not travel in the same direction. After, it hits the water, it changes in angle. Light becomes refracted. This is observed when your hands tend to become bigger if you place it underwater. The formula for Snell's Law is
n₁ sin θ₁ = n₂sin θ₂, where n is the index of refraction. This depends on the type of medium. For example, for air, n=1. The parameters θ₁ is the angle of incidence, and θ₂ is the angle of refraction. Critical angle is the incident angle needed so that the refract angle is 90°. So, modifying the equation:
n₁ sin θcrit = n₂sin 90°, since sin 90°=1,
sin θcrit = n₂/n₁
θcrit = sin ⁻¹ (n₂/n₁)
Since liquid comes first before glass, n₁=1.75 and n₂=1.52. Substituting,
θcrit = sin ⁻¹ (1.52/1.75)
θcrit = 60.29°
Answer:
Q = - 4312 W = - 4.312 KW
Explanation:
The rate of heat of the concrete slab can be calculated through Fourier's Law of heat conduction. The formula of the Fourier's Law of heat conduction is as follows:
Q = - kA dt/dx
Integrating from one side of the slab to other along the thickness dimension, we get:
Q = - kA(T₂ - T₁)/L
Q = kA(T₁ - T₂)/t
where,
Q = Rate of Heat Loss = ?
k = thermal conductivity = 1.4 W/m.k
A = Surface Area = (11 m)(8 m) = 88 m²
T₁ = Temperature of Bottom Surface = 10°C
T₂ = Temperature of Top Surface = 17° C
t = Thickness of Slab = 0.2 m
Therefore,
Q = (1.4 W/m.k)(88 m²)(10°C - 17°C)/0.2 m
<u>Q = - 4312 W = - 4.312 KW</u>
<u>Here, negative sign shows the loss of heat.</u>
<u>Answer:</u> The correct answer is two electrons are shared between each hydrogen atom and the carbon atom bonded to it, and four electrons are shared between the carbon atoms.
<u>Explanation:</u>
Ethylene is a compound given by the chemical formula
.
The bond present between hydrogen and carbon atoms or carbon and carbon atoms are covalent bonds. A covalent bond is formed by the sharing of electrons between the atoms combining.
A double bond is present between carbon and carbon atoms. So 2 pairs of electrons are shared which means in total of 4 electrons are shared.
Bond present between hydrogen and carbon atoms are single bonds. So, a pair of electrons is shared which means that in total of 2 electrons are shared.
Hence, the correct answer is two electrons are shared between each hydrogen atom and the carbon atom bonded to it, and four electrons are shared between the carbon atoms.
By definition we have that the final speed is:
Vf² = Vo² + 2 * a * d
Where,
Vo: Final speed
a: acceleration
d: distance.
We cleared this expression the acceleration:
a = (Vf²-Vo²) / (2 * d)
Substituting the values:
a = ((0) ^ 2- (60) ^ 2) / ((2) * (123) * (1/5280))
a = -77268 mi / h ^ 2
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is:
First you must make a free body diagram and see the acceleration of the car:
g = 32.2 feet / sec ^ 2
a = -77268 (mi / h ^ 2) * (5280/1) (feet / mi) * (1/3600) ^ 2 (h / s) ^ 2
a = -31.48 feet / sec ^ 2
A = a + g * sin (θ) = -31.48 + 32.2 * sin17.0
A = -22.07 feet / sec ^ 2
Clearing the braking distance:
Vf² = Vo² + 2 * a * d
d = (Vf²-Vo²) / (2 * a)
Substituting the values:
d = ((0) ^ 2- (60 * (5280/3600)) ^ 2) / (2 * (- 22.07))
d = 175.44 feet
answer:
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is 175.44 feet
Karate class, kicking high and ducking fast makes you much more flexible and you must pay respects to those ou fight with and be intune with yourself to do it right, in other words karate is the answer.