According to the saving of the momentum, the total momentum before collision is equal to the total momentum after collision
<em><u>in symbols:</u></em>
<em>
</em>
thus

then, the initial momentum of the second cart

Straight lines is my best answer
The Bohr model resembles a planetary system in which the negatively-charged electrons orbit a small and very dense, positively-charged nucleus at the atom's center.
The electrons are held in orbit by the Coulomb (electrical) force between the positively-charged nucleus and the negatively-charged electrons.
The electrons cannot occupy just any orbital radius.
Only orbits with a very specific set of energy values are permitted (which all atoms of a given element have in common and are unique to that element).
The lowest energy (or ground state) corresponds to orbit closest to the nucleus and photons with specific amounts of electromagnetic radiation are absorbed or emitted when an electron moves from one orbit to another (absorbed to move further up the permitted levels and away from the nucleus)
An atomic line spectrum is the whole range of specific photon radiation frequencies that an element can emit or absorb as it's electrons move between the energy levels allowed in those atoms.
The emissions correspond with electrons descending 'down' their energy levels, with the energy differences being carried away by photons with the appropriate frequency. Consequently an emission spectra is a series of specific, single color lines (against a black background) for each of the emitted frequencies.
Photon absorption provides the energy for electrons to 'climb' the set of energy levels for that element. So, putting electrons into higher energy states within an atom.
When the absorbed photons are removed from incident light containing the full spectrum, their absence is seen as a series of fine black lines on an otherwise continuous spectrum background.
<span>
The features in absorption and emission spectra coincide exactly for atoms of a given element. </span>
Answer:
B = E/c = 14.04T₁ = 11 pT
Explanation:
We know c = E/B where E = maximum electric field = 3.30 × 10⁻³ V/m, B = maximum magnetic field and c = speed of light
B = E/c also c = fλ = λ/T where λ = wavelength = 235 μm = 235 × 10⁻⁶ m and T = period
c = λ₁/T₁ = λ₂/T₂ T₂ = 2.8T₁ where λ₁,λ₂ are the initial and final wavelengths and T₁,T₂ are the initial and final periods.
T₁ = λ₁/c = 235 × 10⁻⁶ m/3 × 10⁸ m/s = 7.833 × 10⁻¹³ s = 0.7833 ps
T₂ = 2.8T₁ = 2.8 × 7.833 × 10⁻¹³ s = 21.93 × 10⁻¹³ s = 2.193 ps
λ₁/T₁ = λ₂/2.8T₁
λ₂ = 2.8λ₁ = 2.8 × 235 μm = 658 μm
c = λ₂/T₂ = 2.8λ₁/2.8T₁ = λ₁/T₁ , since the speed of light c is constant.
B = E/c = E/λ₁/T₁ = ET₁/λ₁
B = ET₁/λ₁ = 3.30 × 10⁻³ V/m × T₁/235 × 10⁻⁶ m = 14.04T₁ Tesla
B = 14.04 × 7.833 × 10⁻¹³ s = 10.99 × 10⁻¹² T ≅ 11 pT
Answer:
because carbon 14 has only a short half life, rather than other elements with longer half lives.
Explanation:
✨science✨