Answer:
EMF induced in the loop is 9.4 V
Explanation:
As we know that initial magnetic flux of the loop is given as



As soon as the area of the loop becomes zero the final magnetic flux of the loop is ZERO
Now as per faraday's law of electromagnetic induction the EMF is induced due to rate of change in magnetic flux
so we will have

so we will have


Answer:
The velocity of the ball after 5 seconds will be 49 m/s
Explanation:
<em>v = final velocity</em>
<em>u = initial velocity</em>
<em>g = acceleration due to gravity</em>
<em>t = time</em>
Initial velocity of the ball = 0 (As the ball is dropped from rest )
Acceleration due to gravity = 9.8 m/s
Time taken = 5 sec
As the acceleration due to gravity is constant in both the cases we can use the equations of motion in order to solve this question
Part I :- As we already know the values of u,g,ant t we can use the first equation of motion in order to find v
Part II :- As we know the values of u, t , g we can use the second equation of motion in order to find s.
Velocity of the ball after 5 seconds
Distance covered by the ball in 5 sec
Missing graph. I attach it in the answer.
In a uniformly accelerated motion, the velocity at time t is given by:

where a is the acceleration and t is the time.
Given the previous equation, if we plot v(t) versus t, we find a straight line; moreover, a (the acceleration) represents the slope of the curve.
Looking at the graph, we see that when the time goes from 10 s to 20 s, the velocity increases from 4 m/s to 6 m/s. Therefore the slope of the curve is

and this corresponds to the acceleration.
So, the correct answer is <span>
0.2 m/s2.</span>
Answer: Weight
Explanation:The mass of an object is a measure of the quantity of matter in the object. This quantity remains constant under any circumstance.
However, the same cannot be said about the weight of such object.
The weight of the object is very much dependent on the acceleration due to gravity which is a accelerational pull (by convention-- a pull downwards).
This is why an object tends to fall when it is thrown upwards on the earth for instance.
The statements above consequently infer that since the gravitational field of Jupiter is greater than that of the earth, the acceleration due to gravity on Jupiter is greater than that on earth.
And since the weight of an object(W) is a product of its mass and the acceleration due to gravity at that point.
Consequently, the object's weight on Jupiter would be greater than its weight on earth.
Please note; The Mass of the object remains constant everywhere.