Hi there!

We know that:

U = Potential Energy (J)
K = Kinetic Energy (J)
E = Total Energy (J)
At 10m, the total amount of energy is equivalent to:
U + K = 50 + 50 = 100 J 
To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:
100J = mgh 
We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².
50J = 10(10)m
m = 1/2 kg
Now, solve for height given that E = 100 J:
100J = 1/2(10)h
100J = 5h 
<u>h = 20 meters</u>
 
        
             
        
        
        
Answer:

Explanation:
The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.
Also, we know that the centripetal force of an object describing a circular motion is given by:

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle. 
Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So  and
 and  (Since
 (Since  ). Then, we get:
). Then, we get:

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).
 
        
             
        
        
        
Answer:
v = 23.66 m/s
Explanation:
recall that one of the equations of motion may be expressed:
v² = u² + 2as, 
Where 
v = final velocity (we are asked to find this)
u = initial velocity = 0 m/s since we are told that it starts from rest
a = acceleration = 0.56m/s²
s = distance traveled = given as 500m
Simply substitute the known values into the equation:
v² = u² + 2as
v² = 0 + 2(0.56)(500)
v² = 560
v = √560
v = 23.66 m/s
 
        
             
        
        
        
Answer:
K.E = 100 J
Final P.E = 100 J
Explanation:
The kinetic energy of any object can be given by the following formula:

where,
K.E = Kinetic Energy
m = mass of ball = 2 kg
v = speed of ball 
Initially, v = 10 m/s. Therefore, the initial K.E is given as:

<u>K.E = 100 J</u>
Now, at the highest point the K.E of the ball becomes zero. because the ball stops for a moment at the highest point and its velocity becomes zero. So, from Law of Conservation of energy:
Initial K.E + Initial P.E = Final K.E + Final P.E
Initial P.E is also zero due to zero height initially.
K.E + 0 = 0 + Final P.E
<u>Final P.E = 100 J</u>