Answer:
velocity of the metal cylinder = 0.343 m/s
Explanation:
Force putting the metal cylinder is given by
F = mv²/r
But this force will balance the frictional force between the metal cylinder and the turntable
The frictional force is given by
μN = μ × mg = 0.08 × 0.2 × 9.81 = 0.15696 N
r = 0.15 m, m = 0.2 kg,
F = mv²/r = 0.2 v²/(0.15) = 1.3333 v²
1.3333 v² = 0.15696
v² = 0.117
v = 0.343 m/s
Answer:
(a) 1000 N/C
Explanation:
Kinetic energy of electron, K = 1.6 x 10^-17 J
distance, d = 10 cm = 0.1 m
Let the potential difference is V and the electric field is E.
(a) The relation between the kinetic energy and the potential difference is
K = e V
V = K / e
Where, e be the electronic charge = 1.6 x 10^-19 C
V = 
V = 100 V
The relation between the electric field and the potential difference is given by
V = E x d
100 = E x 0.1
E = 1000 N/C
(b) The force acting on the electron, F = q E
where q be the charge on electron
So, F = -e x E
It means the direction of electric field and the force are both opposite to each other.
The direction of electric field and the force on electron is shown in the diagram.
<span>Carnot cycle efficiency = work done/heat supplied = (Th - Tc)/Th
where, Th is temperature of hot reservoir and Tc is temperature of cold reservoir.
we have given the values as Heat supplied = 1.3 MJ or 1300 KJ, Th = 427 degree C and Tc = 90 degree C.
converting degree Celsius to kelvin temperatures, Th = 427 + 273 = 700 K
Tc = 90 +273 = 363
solving equations, (700 - 363)/700 = work done / 1300
work done = 625.86 KJ i.e. 0.626 MJ work is done .</span>
Answer:
0.58
Explanation:
Sinẞ = opposite ÷ hypotenuse
Sinẞ = 5 ÷ 8.6
Sinẞ = 0.5814
Sinẞ ≈ 0.58