1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
3 years ago
14

Consider a spring mass system (mass m1, spring constant k) with period T1. Now consider a spring mass system with the same sprin

g but a different mass (mass m2, spring constant k) but the period is twice as long. Compare m2 to m1 (calculate the ratio m2/m1)
Physics
1 answer:
tatuchka [14]3 years ago
6 0

Answer:

Assuming that both mass here move horizontally on a frictionless surface, and that this spring follows Hooke's Law, then the mass of m_2 would be four times that of m_1.

Explanation:

In general, if the mass in a spring-mass system moves horizontally on a frictionless surface, and that the spring follows Hooke's Law, then

\displaystyle \frac{m_2}{m_1} = \left(\frac{T_2}{T_1}\right)^2.

Here's how this statement can be concluded from the equations for a simple harmonic motion (SHM.)

In an SHM, if the period is T, then the angular velocity of the SHM would be

\displaystyle \omega = \frac{2\pi}{T}.

Assume that the mass starts with a zero displacement and a positive velocity. If A represent the amplitude of the SHM, then the displacement of the mass at time t would be:

\mathbf{x}(t) = A\sin(\omega\cdot t).

The velocity of the mass at time t would be:

\mathbf{v}(t) = A\,\omega \, \cos(\omega\, t).

The acceleration of the mass at time t would be:

\mathbf{a}(t) = -A\,\omega^2\, \sin(\omega \, t).

Let m represent the size of the mass attached to the spring. By Newton's Second Law, the net force on the mass at time t would be:

\mathbf{F}(t) = m\, \mathbf{a}(t) = -m\, A\, \omega^2 \, \cos(\omega\cdot t),

Since it is assumed that the mass here moves on a horizontal frictionless surface, only the spring could supply the net force on the mass. Therefore, the force that the spring exerts on the mass will be equal to the net force on the mass. If the spring satisfies Hooke's Law, then the spring constant k will be equal to:

\begin{aligned} k &= -\frac{\mathbf{F}(t)}{\mathbf{x}(t)} \\ &= \frac{m\, A\, \omega^2\, \cos(\omega\cdot t)}{A \cos(\omega \cdot t)} \\ &= m \, \omega^2\end{aligned}.

Since \displaystyle \omega = \frac{2\pi}{T}, it can be concluded that:

\begin{aligned} k &= m \, \omega^2 = m \left(\frac{2\pi}{T}\right)^2\end{aligned}.

For the first mass m_1, if the time period is T_1, then the spring constant would be:

\displaystyle k = m_1\, \left(\frac{2\pi}{T_1}\right)^2.

Similarly, for the second mass m_2, if the time period is T_2, then the spring constant would be:

\displaystyle k = m_2\, \left(\frac{2\pi}{T_2}\right)^2.

Since the two springs are the same, the two spring constants should be equal to each other. That is:

\displaystyle m_1\, \left(\frac{2\pi}{T_1}\right)^2 = k = m_2\, \left(\frac{2\pi}{T_2}\right)^2.

Simplify to obtain:

\displaystyle \frac{m_2}{m_1} = \left(\frac{T_2}{T_1}\right)^2.

You might be interested in
The plates of a parallel-plate capacitor are 2.50 mm apart, and each carries a charge of magnitude 80.0 nC. The plates are in va
bonufazy [111]

Answer:

10000 V

0.00225988700565 m²

8\times 10^{-12}\ F

Explanation:

E = Electric field = 4\times 10^6\ V/m

d = Gap = 2.5 mm

Q = Charge = 80 nC

\epsilon_0 = Permittivity of free space = 8.85\times 10^{-12}\ F/m

Potential difference is given by

V=Ed\\\Rightarrow V=4\times 10^6\times 2.5\times 10^{-3}\\\Rightarrow V=10000\ V

The potential difference between the plates is 10000 V

Area is given by

A=\dfrac{Q}{\epsilon_0E}\\\Rightarrow A=\dfrac{80\times 10^{-9}}{8.85\times 10^{-12}\times 4\times 10^6}\\\Rightarrow A=0.00225988700565\ m^2

The area of the plate is 0.00225988700565 m²

Capacitance is given by

C=\dfrac{\epsilon_0A}{d}\\\Rightarrow C=\dfrac{8.85\times 10^{-12}\times 0.00225988700565}{2.5\times 10^{-3}}\\\Rightarrow C=8\times 10^{-12}\ F

The capacitance is 8\times 10^{-12}\ F

4 0
3 years ago
Alguien que sepa de electromecánica porfavor
kkurt [141]
LAPA HDIDOSHSUWJWVWIHDHDOSSHSVWIME
8 0
2 years ago
Light behaves like a) a wave at times, and a particle at other times.
Damm [24]

The wave-particle dual nature of light has been documented and tested many times.

Choice A

6 0
3 years ago
1. What is the heat energy when 114.32g of water ( c = 4.18 J/g °C) at 14.85°C is raised to
timama [110]
Dnt listen to the file stuff
6 0
2 years ago
A screw is a type of simple machine. If we look closely at a screw, we see that it is really a _________ wrapped around a centra
Andrej [43]
Is is really an inclined plane 
4 0
3 years ago
Read 2 more answers
Other questions:
  • Two blocks, with masses m and 3m , are attached to the ends of a string with negligible mass that passes over a pulley, as shown
    7·1 answer
  • In order to ensure that a cable is not affected by electromagnetic interference, how far away should the cable be from fluoresce
    13·1 answer
  • Suppose you are taking a walk one day when you see a tree branch snap at its base and begin to rotate downward with the break ne
    13·1 answer
  • Air flows through a converging-diverging nozzle/diffuser. A normal shock stands in the diverging section of the nozzle. Assuming
    5·1 answer
  • What is the simple average of these two velocities (0m/s, 0.4m/s)​
    15·1 answer
  • Calculate the momentum of a 6 kg ball thrown at 20 m/s by a 3 newton<br> force. *
    15·1 answer
  • Please hellp!!!!!!!!!!!!!!!!!!!!?
    10·2 answers
  • Moving along the elevtromagnetic spectrum from low frequency to high frequency, what , if anything, happens to the wavelength?
    12·1 answer
  • O.
    7·1 answer
  • 20. Q: How long will it take for an apple falling from a 29.4m-tall tree to hit the ground?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!