1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
2 years ago
10

Which of the following statements is true?

Physics
1 answer:
inn [45]2 years ago
5 0
C is the right answe
You might be interested in
When the temperature of ice-cold water is increased slightly, does it undergo a net expansion or net contraction?
miss Akunina [59]

From the freezing temperature up to about 4°C (39°F) the water CONTRACTS.  That is, it becomes MORE dense.  I think I read that water is the ONLY known substance whose solid phase floats in its liquid phase.  That's why the cubes float in your soda and bergs float in the ocean.  And if weren't so, then life on Earth would not be possible !  Oceans and lakes would freeze from the bottom up, ONE TIME, and then never thaw again.

4 0
2 years ago
Sally and Juan’s science teacher has directed the class to build a paper airplane. The challenge is to build an airplane that fl
devlian [24]
Evaluating a solution
8 0
3 years ago
Read 2 more answers
A marble rolls 269cm across the floor with a constant speed of in 44.1cm/s.
Marrrta [24]

Answer:

t = 6.09 seconds

Explanation:

Given that,

Speed, v = 44.1 cm/s

Distance, d = 269 cm

We need to find the time interval of the marble. Speed is distance per unit time.

v=\dfrac{d}{t}\\\\\implies t=\dfrac{d}{v}\\\\t=\dfrac{269\ \text{cm}}{44.1\ \text{cm/s}}\\\\t=6.09\ s

Hence, the time interval of the marble is 6.09 seconds.

6 0
3 years ago
A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and
Nastasia [14]

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

4 0
3 years ago
2. An object's weight is proportional to its _ or _ from another object
leva [86]

Answer:

mass

gravitational pull

5 0
2 years ago
Other questions:
  • (a) Calculate the self-inductance (in mH) of a 55.0 cm long, 10.0 cm diameter solenoid having 1000 loops.
    14·1 answer
  • Which of the following phrases best describes the term "magnetic flux"?
    11·1 answer
  • 10 PTS!
    15·2 answers
  • What does the word invulnerable mean​
    6·1 answer
  • A constant force of 40N acting on a body initially at rest gives it an acceleration of 0.1m/s inverse 2 for 4s .calculate the wo
    13·1 answer
  • Will give BRAINEST to the person who answers right
    8·2 answers
  • Four waves are described by the following equations, where distances are measured in meters and times in seconds. I. y = 0.12 co
    8·1 answer
  • If We Start With 48 Atoms Of A Radioactive Substance, How Many Would Remain After One Half-life?
    15·1 answer
  • Two particles are separated by 0.38 m and have charges of -6.25 x 10-9C
    15·2 answers
  • A track coach measures the 100-meter time of a track athlete. The runner completes the distance in 11.5 seconds. If the stopwatc
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!