1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
8

An inductor with an inductance of 2.30H and a resistance of 8.00 Ω isconnected to the terminals of a battery with an emf of 6.00

V andnegligible internal resistance.
(a) Find the initial rate of increase ofcurrent in the circuit.
1 A/s

(b) Find the rate of increase of current at the instant when thecurrent is 0.500 A.
2 A/s

(c) Find the current 0.250 s after the circuit is closed.
3 A

(d) Find the final steady-state current.
4 A
Physics
1 answer:
Basile [38]3 years ago
3 0

Answer:

(a). The initial rate is 2.60 A/s.

(b). The rate of current increases is 0.8658 A/s.

(c). The current is 0.435 A.

(d). The final steady-state current is 0.75 A.

Explanation:

Given that,

Inductance = 2.30 H

Resistance = 8.00 Ω

Voltage = 6.00 V

(a). We need to calculate the initial rate of increase of current in the circuit.

Using formula of initial rate

V=initial\ rate\times inductance

initial\ rate=\dfrac{V}{L}

Put the value into the formula

initial \rate=\dfrac{6.00}{2.30}

initial\ rate=2.60\ A/s

The initial rate is 2.60 A/s.

(b). We need to calculate the rate of increase of current at the instant when the current is 0.500

Using formula of rate of increase of current

rate\ of \ current\ increase=initial\ rate\times e^{\dfrac{-t}{T}}....(I)

Where, T=\dfrac{L}{R}

T=\dfrac{2.30}{8.00}

T=0.2875

Using formula of current

i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})

e^{\dfrac{-t}{T}}=1-(i\times\dfrac{R}{V})

e^{\dfrac{-t}{T}}=1-(0.500\times\dfrac{8.00}{6.00})

e^{\dfrac{-t}{T}}=0.333

The rate of current increases is

Put the value in the equation (I)

rate\ of\ current\ increase=2.60\times0.333

rate\ of\ current\ increase=0.8658\ A/s

The rate of current increases is 0.8658 A/s.

(c). We need to calculate the current

Using formula of current

i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})

Put the value into the formula

i=\dfrac{6.00}{8.00}\times(1-e^{\dfrac{-0.250}{0.2875}})

i=0.435\ A

The current is 0.435 A.

(d). We need to calculate the final steady-state current

Using formula of steady state

i=\dfrac{V}{R}

i=\dfrac{6.00}{8.00}

i=0.75\ A

The final steady-state current is 0.75 A.

Hence, This is the required solution.

You might be interested in
How does radiation help treat cancer?
sergejj [24]

Answer:

it cools down the cancer cells

Explanation:

The cancer cells are rapidly reproducing and when you cool it down it slows down the mutation/ reproduction process.

3 0
3 years ago
Read 2 more answers
What kind of star gives rise to a type i supernova?
larisa86 [58]

a. It occures in binary systems where one of them is a whitedwarf

3 0
3 years ago
A person takes a trip, driving with a constant speed of 94.5 km/h except for a 22.0 min rest stop. If the person's average speed
qwelly [4]
From the average speed you can fix an equation:

Average speed = distance / time

You know the average speed = 65.1 kg / h, then

65.1 = distance / total time,

where total time is the time traveling plus 22.0 minutes

Call t the time treavelling and pass 22 minutes to hours:

65.1 = distance / [t + 22/60] ==> distance = [t + 22/60]*65.1

 
From the constant speed, you can fix a second equation

Constant speed = distance / time traveling

94.5 = distance / t ==> distance = 94.5 * t

The distance is the same in both equations, then you have:

[t +22/60] * 65.1 = 94.5 t

Now you can solve for t.

65.1t + 22*65.1/60 = 94.5t

94.5t - 65.1t = 22*65.1/60

29.4t = 23.87

t = 23.87 / 29.4

t  = 0.812 hours

distance = 94.5 km/h * 0.812 h = 76.7 km

Answers: 1) 0.81 hours, 2) 76.7 km


4 0
3 years ago
In a Little League baseball game, the 145 g ball enters the strike zone with a speed of 17.0 m/s . The batter hits the ball, and
VMariaS [17]

Hi there!

Impulse = Change in momentum

I = Δp = mΔv = m(vf - vi)

Where:

m = mass of object (kg)

vf = final velocity (m/s)

vi = initial velocity (m/s)

Begin by converting grams to kilograms:

1 kg = 1000g ⇒ 145g = .145kg

Now, plug in the given values. Remember to assign directions since velocity is a vector. Let the initial direction be positive and the opposite be negative.

I = (.145)(-20 - 17) = -5.365 Ns

The magnitude is the absolute value, so:

|-5.365| = 5.365 Ns

4 0
2 years ago
Which equation is used to calculate the magnetic force on a charge moving in a magnetic field?
nadya68 [22]

Answer:

B

Explanation:

6 0
3 years ago
Other questions:
  • How would the number 56,780,000,000 be written in scientific notation?
    14·1 answer
  • Superconductors have no measurable resistance. true or false?
    12·1 answer
  • The force that keeps two surfaces at rest from sliding over each other is
    5·1 answer
  • How do you calculate acceleration
    5·2 answers
  • Draw a net force arrow on the picture below.<br><br> What is the net force? State the direction.
    7·2 answers
  • Assume that a person bouncing a ball represents a closed system. Which statement best describes how the amounts of the ball's po
    5·1 answer
  • What is the function of eye lens of the human eye<br>​
    15·1 answer
  • What is the average speed of a race car that moved 20 kilometers in 10 minutes?
    7·1 answer
  • The angle of incidence of another red ray is 65º. The refractive index of the glass of block
    7·1 answer
  • A student pushes a block from rest across a frictionless surface while the block is in front of a motion detector for 3 seconds.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!