1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
8

An inductor with an inductance of 2.30H and a resistance of 8.00 Ω isconnected to the terminals of a battery with an emf of 6.00

V andnegligible internal resistance.
(a) Find the initial rate of increase ofcurrent in the circuit.
1 A/s

(b) Find the rate of increase of current at the instant when thecurrent is 0.500 A.
2 A/s

(c) Find the current 0.250 s after the circuit is closed.
3 A

(d) Find the final steady-state current.
4 A
Physics
1 answer:
Basile [38]3 years ago
3 0

Answer:

(a). The initial rate is 2.60 A/s.

(b). The rate of current increases is 0.8658 A/s.

(c). The current is 0.435 A.

(d). The final steady-state current is 0.75 A.

Explanation:

Given that,

Inductance = 2.30 H

Resistance = 8.00 Ω

Voltage = 6.00 V

(a). We need to calculate the initial rate of increase of current in the circuit.

Using formula of initial rate

V=initial\ rate\times inductance

initial\ rate=\dfrac{V}{L}

Put the value into the formula

initial \rate=\dfrac{6.00}{2.30}

initial\ rate=2.60\ A/s

The initial rate is 2.60 A/s.

(b). We need to calculate the rate of increase of current at the instant when the current is 0.500

Using formula of rate of increase of current

rate\ of \ current\ increase=initial\ rate\times e^{\dfrac{-t}{T}}....(I)

Where, T=\dfrac{L}{R}

T=\dfrac{2.30}{8.00}

T=0.2875

Using formula of current

i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})

e^{\dfrac{-t}{T}}=1-(i\times\dfrac{R}{V})

e^{\dfrac{-t}{T}}=1-(0.500\times\dfrac{8.00}{6.00})

e^{\dfrac{-t}{T}}=0.333

The rate of current increases is

Put the value in the equation (I)

rate\ of\ current\ increase=2.60\times0.333

rate\ of\ current\ increase=0.8658\ A/s

The rate of current increases is 0.8658 A/s.

(c). We need to calculate the current

Using formula of current

i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})

Put the value into the formula

i=\dfrac{6.00}{8.00}\times(1-e^{\dfrac{-0.250}{0.2875}})

i=0.435\ A

The current is 0.435 A.

(d). We need to calculate the final steady-state current

Using formula of steady state

i=\dfrac{V}{R}

i=\dfrac{6.00}{8.00}

i=0.75\ A

The final steady-state current is 0.75 A.

Hence, This is the required solution.

You might be interested in
Glare appears on a computer screen when light from the surroundings reflects off of the screen’s surface. Some computer screens
hoa [83]

Answer:

The correct answer is D.

D:The surface of the coating allows light from the room to pass through but blocks the light from the screen.

Explanation:

Glare is produced on a computer screen when light from some external source reflects on the screen.

Anti-glare coating do not absorb light to reduce glare but they actually reduce glare by encouraging the light from the room to pass through the screen so that less light is reflected. Polarized lenses absorbs light to reduce glare, not anti-glare coating.

7 0
3 years ago
Read 2 more answers
Organizing and interpreting information from the senses is called
PIT_PIT [208]

I believe the answer you are looking for is perception.

3 0
3 years ago
Read 2 more answers
A descending elevator of mass 1,000 kg is uniformly decelerated to rest over a distance of 8 m by a cable in which the tension i
Stolb23 [73]

The speed  V_{i} of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.

We are given that-

the mass of the elevator (m) = 1000 kg ;

the distance the elevator decelerated to be y = 8m ;

the tension is T = 11000 N;

let us determine the acceleration 'a' by using Newton's second law of motion.

∑Fy = ma

W - T = ma

(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a

9800 - 11000 = 1000

a = - 1.2 m/s²

Using the equation of kinematics to determine the initial velocity.

V_{f} ² = V_{i}² + 2ay

V_{i} = √ ( 2 x 1.2m/s² x 8 m )

V_{i} = √19.2 m²/s²

V_{i} = 4.38 m/s   ≈ 4 m/s

Hence, the initial velocity of the elevator is 4m/s.

Read more about the Equation of kinematics:

brainly.com/question/12351668

#SPJ4

8 0
1 year ago
Describe what happens to chemical<br> bonds during a chemical reaction
dimulka [17.4K]

Explanation:

The bonds that keep molecules together break apart and form new bonds during chemical reactions, rearranging atoms into different substances. Each bond takes a distinct amount of energy to either break or form; the reaction does not take place without this energy, and the reactants stay as they were.

6 0
2 years ago
What net force is required to accelerate a car at a rate of 2m/s^2 if the car has a mass of 3,000kg? plus explanation with equat
Vinvika [58]

Answer:

<h2>6000 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question

mass = 3000 kg

acceleration = 2 m/s²

We have

force = 3000 × 2 = 6000

We have the final answer as

<h3>6000 N</h3>

Hope this helps you

3 0
2 years ago
Other questions:
  • A point charge is at the origin. With this point charge as the source point, what is the unit vector r^ in the direction of (a)
    13·1 answer
  • Which equation could be rearranged to calculate the frequency of a wave?
    6·1 answer
  • Kevin works for his own gutter and siding company and loves that he gets to climb around and work outside. marsha is an accounta
    9·1 answer
  • D=1/2at^2 <br> solve for a
    14·1 answer
  • How does the wavelength of a wave change when frequency decreases? when frequency increases?
    8·1 answer
  • Cylinder A has a mass of 2kg and cylinder B has a mass of 10kg. Determinethe velocity of A after it has displaced 2m from its or
    11·1 answer
  • What is the role of MnO2 in a dry cell?​
    6·1 answer
  • Determine the speed, wavelength, and frequency of light from a helium-neon laser as it travels through diamond. The wavelength o
    12·1 answer
  • Giventhe electrkfield E= W,+ xoy+2az (V/m), find
    7·1 answer
  • A 500 kg sack of coal falls vertically onto a 2000 kg railroad flatcar which was initially moving horizontally at 3 m/s. no exte
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!