1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
8

An inductor with an inductance of 2.30H and a resistance of 8.00 Ω isconnected to the terminals of a battery with an emf of 6.00

V andnegligible internal resistance.
(a) Find the initial rate of increase ofcurrent in the circuit.
1 A/s

(b) Find the rate of increase of current at the instant when thecurrent is 0.500 A.
2 A/s

(c) Find the current 0.250 s after the circuit is closed.
3 A

(d) Find the final steady-state current.
4 A
Physics
1 answer:
Basile [38]3 years ago
3 0

Answer:

(a). The initial rate is 2.60 A/s.

(b). The rate of current increases is 0.8658 A/s.

(c). The current is 0.435 A.

(d). The final steady-state current is 0.75 A.

Explanation:

Given that,

Inductance = 2.30 H

Resistance = 8.00 Ω

Voltage = 6.00 V

(a). We need to calculate the initial rate of increase of current in the circuit.

Using formula of initial rate

V=initial\ rate\times inductance

initial\ rate=\dfrac{V}{L}

Put the value into the formula

initial \rate=\dfrac{6.00}{2.30}

initial\ rate=2.60\ A/s

The initial rate is 2.60 A/s.

(b). We need to calculate the rate of increase of current at the instant when the current is 0.500

Using formula of rate of increase of current

rate\ of \ current\ increase=initial\ rate\times e^{\dfrac{-t}{T}}....(I)

Where, T=\dfrac{L}{R}

T=\dfrac{2.30}{8.00}

T=0.2875

Using formula of current

i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})

e^{\dfrac{-t}{T}}=1-(i\times\dfrac{R}{V})

e^{\dfrac{-t}{T}}=1-(0.500\times\dfrac{8.00}{6.00})

e^{\dfrac{-t}{T}}=0.333

The rate of current increases is

Put the value in the equation (I)

rate\ of\ current\ increase=2.60\times0.333

rate\ of\ current\ increase=0.8658\ A/s

The rate of current increases is 0.8658 A/s.

(c). We need to calculate the current

Using formula of current

i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})

Put the value into the formula

i=\dfrac{6.00}{8.00}\times(1-e^{\dfrac{-0.250}{0.2875}})

i=0.435\ A

The current is 0.435 A.

(d). We need to calculate the final steady-state current

Using formula of steady state

i=\dfrac{V}{R}

i=\dfrac{6.00}{8.00}

i=0.75\ A

The final steady-state current is 0.75 A.

Hence, This is the required solution.

You might be interested in
If you double d, what happens to your force
Tanzania [10]

Answer:

If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases. If the distance is doubled, the force of gravity is one-fourth as strong as before.

3 0
3 years ago
A 15.0-kg block is dragged over a rough, horizontal surface by a 70.0-N force acting at 20.0° above the horizontal. The block is
Tatiana [17]

Answer:

Explanation:

from the question we are told that

Load L=15kg

ForceF=70N

Angle of inclination =20.0 degres

Displacement m=5 meters

coefficient of kinetic friction \alpha  =0.300

3 0
3 years ago
An air-track glider undergoes a perfectly inelastic collision with an identical glider that is initially at rest. what fraction
DiKsa [7]
Refer to the diagram shown below.

The initial KE (kinetic energy) of the system is
KE₁ = (1/2)mu²

After an inelastic collision, the two masses stick together.
Conservation of momentum requires that
m*u = 2m*v
Therefore
v = u/2

The final KE is
KE₂ = (1/2)(2m)v²
       = m(u/2)²
       = (1/4)mu²
      = (1/2) KE₁

The loss in KE is
KE₁ - KE₂ = (1/2) KE₁.

Conservation of energy requires that the loss in KE be accounted for as thermal energy.

Answer:  1/2 

5 0
4 years ago
Read 2 more answers
A. what is the formula for measuring the price elasticity of supply?
daser333 [38]
Can't you look it up or something? Idk what it is but I can try and look it up for ya! If you want
7 0
3 years ago
On a straight road (taken to be in the x direction) you drive for an hour at 60 km per hour, then quickly speed up to 120 km per
Luda [366]

Answer:

The average velocity is 180 km/hr

Explanation:

Given;

initial velocity, u = 60 km per hour

final velocity, v = 120 km per hour

initial time = 1 hour

final time = 2 hour

Initial position = 60 km/h x 1 hour = 60 km

final position = 120 km/h x 2 hour = 240 km

The average velocity is given by;

V_{avg} = \frac{Final \ position\  - \ Initial \ position}{final \ time\  - \ initial \ time}\\\\V_{avg} = \frac{240km \ - \ 60km}{2hr\  - \ 1hr} \\\\V_{avg} = \frac{180 \ km}{1hr} \\\\V_{avg}= 180 \ km/hr

Therefore, the average velocity is 180 km/hr

3 0
3 years ago
Other questions:
  • According to the second law of thermodynamics, what is true of entropy in all natural systems?
    7·1 answer
  • To which category does galaxy #9 belong? Why does it belong in this category?
    8·1 answer
  • A positive charge of 6.0 × 10-4 C is in an electric field that exerts a force of 4.5 × 10-4 N on it. What is the strength of the
    9·2 answers
  • A charge of 70 A ·h (ampere-hours) moves through a poten- difference of 25 V. What are (a) the charge in coulombs and(b) the mag
    14·1 answer
  • Usain Bolt ran the 100m dash in 9.69 seconds. How fast does he run in the 100m dash?​
    14·1 answer
  • What is the resistance of a 3.5m copper wire that has a cross-sectional area of 5.26 x 10-6 m2?
    8·2 answers
  • As stream velocity decrease, which factor will likely increase?
    14·2 answers
  • One strategy in a snowball fight is to throw
    8·1 answer
  • look at the circuit in the figure. find the current, voltage, and power in each resistor. please list answer
    8·1 answer
  • If the wave represents a sound wave, explain how increasing amplitude will affect the loudness of the sound? If we decrease the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!