Answer:
(a). The initial rate is 2.60 A/s.
(b). The rate of current increases is 0.8658 A/s.
(c). The current is 0.435 A.
(d). The final steady-state current is 0.75 A.
Explanation:
Given that,
Inductance = 2.30 H
Resistance = 8.00 Ω
Voltage = 6.00 V
(a). We need to calculate the initial rate of increase of current in the circuit.
Using formula of initial rate
![V=initial\ rate\times inductance](https://tex.z-dn.net/?f=V%3Dinitial%5C%20rate%5Ctimes%20inductance)
![initial\ rate=\dfrac{V}{L}](https://tex.z-dn.net/?f=initial%5C%20rate%3D%5Cdfrac%7BV%7D%7BL%7D)
Put the value into the formula
![initial \rate=\dfrac{6.00}{2.30}](https://tex.z-dn.net/?f=initial%20%5Crate%3D%5Cdfrac%7B6.00%7D%7B2.30%7D)
![initial\ rate=2.60\ A/s](https://tex.z-dn.net/?f=initial%5C%20rate%3D2.60%5C%20A%2Fs)
The initial rate is 2.60 A/s.
(b). We need to calculate the rate of increase of current at the instant when the current is 0.500
Using formula of rate of increase of current
....(I)
Where, ![T=\dfrac{L}{R}](https://tex.z-dn.net/?f=T%3D%5Cdfrac%7BL%7D%7BR%7D)
![T=\dfrac{2.30}{8.00}](https://tex.z-dn.net/?f=T%3D%5Cdfrac%7B2.30%7D%7B8.00%7D)
![T=0.2875](https://tex.z-dn.net/?f=T%3D0.2875)
Using formula of current
![i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})](https://tex.z-dn.net/?f=i%3D%5Cdfrac%7BV%7D%7BR%7D%281-e%5E%7B%5Cdfrac%7B-t%7D%7BT%7D%7D%29)
![e^{\dfrac{-t}{T}}=1-(i\times\dfrac{R}{V})](https://tex.z-dn.net/?f=e%5E%7B%5Cdfrac%7B-t%7D%7BT%7D%7D%3D1-%28i%5Ctimes%5Cdfrac%7BR%7D%7BV%7D%29)
![e^{\dfrac{-t}{T}}=1-(0.500\times\dfrac{8.00}{6.00})](https://tex.z-dn.net/?f=e%5E%7B%5Cdfrac%7B-t%7D%7BT%7D%7D%3D1-%280.500%5Ctimes%5Cdfrac%7B8.00%7D%7B6.00%7D%29)
![e^{\dfrac{-t}{T}}=0.333](https://tex.z-dn.net/?f=e%5E%7B%5Cdfrac%7B-t%7D%7BT%7D%7D%3D0.333)
The rate of current increases is
Put the value in the equation (I)
![rate\ of\ current\ increase=2.60\times0.333](https://tex.z-dn.net/?f=rate%5C%20of%5C%20current%5C%20increase%3D2.60%5Ctimes0.333)
![rate\ of\ current\ increase=0.8658\ A/s](https://tex.z-dn.net/?f=rate%5C%20of%5C%20current%5C%20increase%3D0.8658%5C%20A%2Fs)
The rate of current increases is 0.8658 A/s.
(c). We need to calculate the current
Using formula of current
![i=\dfrac{V}{R}(1-e^{\dfrac{-t}{T}})](https://tex.z-dn.net/?f=i%3D%5Cdfrac%7BV%7D%7BR%7D%281-e%5E%7B%5Cdfrac%7B-t%7D%7BT%7D%7D%29)
Put the value into the formula
![i=\dfrac{6.00}{8.00}\times(1-e^{\dfrac{-0.250}{0.2875}})](https://tex.z-dn.net/?f=i%3D%5Cdfrac%7B6.00%7D%7B8.00%7D%5Ctimes%281-e%5E%7B%5Cdfrac%7B-0.250%7D%7B0.2875%7D%7D%29)
![i=0.435\ A](https://tex.z-dn.net/?f=i%3D0.435%5C%20A)
The current is 0.435 A.
(d). We need to calculate the final steady-state current
Using formula of steady state
![i=\dfrac{V}{R}](https://tex.z-dn.net/?f=i%3D%5Cdfrac%7BV%7D%7BR%7D)
![i=\dfrac{6.00}{8.00}](https://tex.z-dn.net/?f=i%3D%5Cdfrac%7B6.00%7D%7B8.00%7D)
![i=0.75\ A](https://tex.z-dn.net/?f=i%3D0.75%5C%20A)
The final steady-state current is 0.75 A.
Hence, This is the required solution.