Water is usually used to cool down automobile engines when they get hot, yes. Therefore, that means water has a high heat capacity.
That makes the answer letter D you provided above.
D) Water has a high heat capacity.
Another example would be trying to put out a fire with a bucket of water. Usually, you can put out the fire debating on the size!
Answer:
I think they cross the line when they force sports into their child's life, and take away their choice of what they want to do so they essentially waste their childhood preparing for something that may never happen or they just don't get the opportunity to explore their artistic abilities.
Explanation:
Answer:
32 C > 32 F > 32 K
Explanation:
32 F, 32 C, 32 K
Let T1 = 32 F
T2 = 32 C
T3 = 32 K
Convert all the temperatures in degree C
The relation between F and C is given by
(F - 32) / 9 = C / 100
so, (32 - 32) / 9 = C / 100
C = 0
So, T1 = 32 F = 0 C
The relation between c and K is given by
C = K - 273 = 32 - 273 = - 241
So, T3 = 32 K = - 241 C
So, T 1 = 0 C, T2 = 32 c, T3 = - 241 C
Thus, T2 > T1 > T3
32C > 32 F > 32 K
Answer:
<em>The distance is 35 m and the magnitude of the displacement is 26.93 m</em>
Explanation:
<u>Displacement and Distance</u>
These are two related concepts. A moving object constantly travels for some distance at defined periods of time. The total distance is the sum of each individual distance the object traveled. It can be written as:
dtotal=d1+d2+d3+...+dn
This sum is calculated independently of the direction the object moves.
The displacement only takes into consideration the initial and final positions of the object. The displacement, unlike distance, is a vectorial magnitude and can even have magnitude zero if the object starts and ends the movement at the same point.
Taylor walks 25 m north and 10 m west. The total distance is the sum of both numbers:
d = 25 m + 10 m = 35 m
To calculate the displacement, we need to know the final position with respect to the initial position. If we set the coordinates of Taylor's car as the origin (0,0), then his final position is (-10,25), assuming the west direction is negative and the north direction is positive.
The magnitude of the displacement is the distance from (0,0) to (-10,25):


D = 26.93 m
The distance is 35 m and the magnitude of the displacement is 26.93 m
The image of the water tower and the houses is in the attachment.
Answer: (a) P = 245kPa;
(b) P = 173.5 kPa
Explanation: <u>Gauge</u> <u>pressure</u> is the pressure relative to the atmospheric pressure and it is only dependent of the height of the liquid in the container.
The pressure is calculated as: P = hρg
where
ρ is the density of the liquid, in this case, water, which is ρ = 1000kg/m³;
When it is full the reservoir contains 5.25×10⁵ kg. So, knowing the density, you know the volume:
ρ = 
V = ρ/m
V = 
V = 525 m³
To know the height of the spherical reservoir, its diameter is needed and to determine it, find the radius:
V = 
![r = \sqrt[3]{ \frac{3}{4\pi } .V}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%7D%7B4%5Cpi%20%7D%20.V%7D)
r = ![\sqrt[3]{\frac{525.3}{4\pi } }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B525.3%7D%7B4%5Cpi%20%7D%20%7D)
r = 5.005 m
diameter = 2*r = 10.01m
(a) Height for House A:
h = 15 + 10.01
h = 25.01
P = hρg
P = 25.01.10³.9.8
P = 245.10³ Pa or 245kPa
(b) h = 25 - 7.3
h = 17.71
P = hρg
P = 17.71.1000.9.8
P = 173.5.10³ Pa or 173.5 kPa