Answer:
Q = 7272 Kilojoules.
Explanation:
<u>Given the following data;</u>
Mass = 2.0*101kg = 202kg
Initial temperature, T1 = 10°C
Final temperature, T2 = 90°C
We know that the specific heat capacity of iron = 450J/kg°C
*To find the quantity of heat*
Heat capacity is given by the formula;
Where;
- Q represents the heat capacity or quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity of water.
- dt represents the change in temperature.
dt = T2 - T1
dt = 90 - 10
dt = 80°C
Substituting the values into the equation, we have;
Q = 7272KJ or 7272000 Joules.
Answer:
A nuclear winter is a climatic phenomenon that would follow the detonation of several atomic bombs in the event that a nuclear war broke out. These bombs would cause firestorms that would raise smoke, dust and particles into the atmosphere that would end up in the stratosphere and eventually spread throughout the globe.
Explanation:
That idea is far fetched, because even though those same particles would absorb sunlight, it would raise the temperature in the stratosphere and cause a decrease in temperature in the Earth's layer. Unable to seep the sun's rays, many plant species would die and this would affect the entire food chain.
In addition, that temperature rise in the stratosphere would destroy part of the ozone layer, causing greater exposure to ultraviolet rays. This would end up affecting health and further damaging plant species.
Let the height where we are trapped is H
now to find the time to reach the key at the bottom is given as

now we have


now if the speed of sound is considered to be 340 m/s then time taken by the sound to reach at the top is given as

now the total time is given as

now by solving above equation we have
H = 48 m
now height of one floor is 3 m
so our position must be

Answer:
Average speed = 5 m/s
Explanation:
Given the following data;
Distance = 100m
Time = 20 secs
To find the average speed;
Speed = distance/time
Substituting into the formula, we have;
Speed = 100/20
Speed = 5m/s
Therefore, Elsa's average speed is 5 meters per seconds.