Answer:
36.22 mA
Explanation:
i1 = I , i2 = I, d = 8.2 cm = 0.082 m
Force per unit length = 3.2 nN/m = 3.2 x 10^-9 N/m
μo = 4 π × 10^-7 Tm/A
The formula for the force per unit length between the two wires is given by
F = μo / 4π x (2 i1 x i2) / d
3.2 x 10^-9 = 10^-7 x 2 x I^2 / 0.082
I = 0.0362 A = 36.22 mA
Because the gravitational force, which points downward, is perfectly balanced by the normal reaction of the floor of the bowling lane, which points upward. The two forces are equal in magnitude, so the net force acting vertically on the bowling ball is zero, therefore there is no acceleration along this direction. Moreover, since the ball is moving in the horizontal direction, the gravitational force has no component along this direction, so it does not change the velocity of the ball.
Terrorist attacks on the United States is the answer.
On September 11, 2001 that was the day New York got attacked by terrorists. The Twin Towers were the ones that got affected, 2,996 people (maybe more) died during that attacked. The terrorists were one of the 2,996 people that died (19 of them died). more than 6,000 were injured that day.
#NeverForget
Hope this helped
Have a great day<span />
The initial velocity of the ball is 1.01 m/s
Explanation:
The motion of the ball rolling off the desk is a projectile motion, which consists of two independent motions:
- A uniform horizontal motion with constant horizontal velocity
- A vertical accelerated motion with constant acceleration (
, acceleration due to gravity)
We start by analyzing the vertical motion: we can find the time of flight of the ball by using the following suvat equation

where
s = 1.20 m is the vertical displacement (the height of the desk)
u = 0 is the initial vertical velocity

t is the time of flight
Solving for t,

Now we analyze the horizontal motion. We know that the ball covers a horizontal distance of
d = 0.50 m
in a time
t = 0.495 s
Therefore, since the horizontal velocity is constant, we can calculate it as

So, the ball rolls off the table at 1.01 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
1.3823 rad/s
20.7345 m/s
28.66129935 m/s²

2006.29095 N radially outward
Explanation:
r = Radius = 15 m
m = Mass of person = 70 kg
g = Acceleration due to gravity = 9.81 m/s²
Angular velocity is given by

Angular velocity is 1.3823 rad/s
Linear velocity is given by

The linear velocity is 20.7345 m/s
Centripetal acceleration is given by

The centripetal acceleration is 28.66129935 m/s²
Acceleration in terms of g


Centripetal force is given by

The centripetal force is 2006.29095 N radially outward
The torque will be experienced when the centrifuge is speeding up of slowing down i.e., when it is accelerating and decelerating.