If you cannot get a chair to move across the floor, it is because static friction opposes your push. When you say static or kinetic friction the two object that facing each other are opposing each other. That's why you're having a hard time pushing the chair.
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
Answer:
D. 18.60
Explanation:
By the law of conservation, the momentum is neither loss nor gained but instead transfered. When they crash into each other, and stick, they combine to create a total mass of 215 kg. Since the momentum is transfered, the two objects, combined, have a total momentum of 4000 kg-m/s. We know that momentum equals mass times velocity. You then divide 4000 by 215 and get approximately 18.6 m/s
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Answer:
The helicopter was deformed and destroyed in the inelastic collision.
Explanation:
- When two object collide there exist two way of colliding: elastic collision and inelastic collision.
- Two terms are considered during the collision: kinetic energy and momentum.
- If both of these terms are conserved in any collision then there is no significant loss of property, this is called as elastic collision.
- If only momentum is conserved but kinetic energy is converted into other forms then it is inelastic collision. In inelastic collision, the energy is lost in the form of vibration, sound etc. causing the damage to colliding object.
- Hence the deformation of helicopter was due to inelastic collision.