Answer:
Explanation:
Let the charge on proton be q .
energy gain by proton in a field having potential difference of V₀
= V₀ q
Due to gain of energy , its kinetic energy becomes 1/2 m v₀²
where m is mass and v₀ is velocity of proton
V₀ q = 1/2 m v₀²
In the second case , gain of energy in electrical field
= 2 V₀q , if v be the velocity gained in the second case
2 V₀q = 1/2 m v²
1/2 m v² = 2 V₀q = 2 x 1/2 m v₀²
mv² = 2 m v₀²
v = √2 v₀
Check this Light doesn't have mass or gravity right?
So if it doesn't have mass or gravity so light can only affect objects with mass
Does that make sense?
The black hole has gravity and remember light doesn't have gravity so does it affect the light?
To answer that yes, and since light doesn't have gravity it gets "pulled" into the black hole
I hope this helps you
Answer: The ratio of atoms of potassium to ratio of atoms of oxygen is 4:2
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed, and remains conserved. The mass of products must be same as that of the reactants.
Thus the number of atoms of each element must be same on both sides of the equation so as to keep the mass same and thus balanced chemical equations are written.
K exists as atoms and oxygen exist as molecule which consists of 2 atoms. The ratio of number of atoms on both sides of the reaction are same and thus the ratio of atoms of potassium to ratio of atoms of oxygen is 4:2.
When Jane is sliding down a slide, she is demonstrating translational motion.
Answer:
Batteries are systems that store chemical energy and then release it as electrical energy when they are connected to a circuit. Batteries can be made from many materials, but they all share three main components: a metal anode, a metal cathode and an electrolyte between them. The electrolyte is an ionic solution that allows charge to flow through the system. When a load, such as a light bulb, is connected, an oxidation-reduction reaction occurs that releases electrons from the anode while the cathode gains electrons
Explanation: