a=b=33400 J
c=4180 J
Further explanation
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
The heat of fusion for water at 0 °C : 334 J/g and the heat of vaporization at 100 °C : 2,230J/g
a. melting

b. freezing

c.raise the temperature(c water = 4.18 J/g C)

Answer:
See explanation
Explanation:
In each chlorine atom, there are seven valence electrons. Recall that each chlorine atom only needs one electron in order to achieve the stable octet structure.
As a result of this, the chlorine atoms in Cl2 share two electrons contributed by each of the bonding atoms. By so doing, each atom achieves the stable octet as required by the octet rule.
Answer:
Reactants break bonds with consuming the energy and form the new bonds .
Explanation:
As the two molecules interacted with each other , the elements reshuffled the bonds and formed the new ones with shifting the energy and converting it into new products .
Mass of Al₂(SO₄)₃ : 4.822 g
<h3>Further explanation </h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
2AlCl₃ + 3(NH₄)₂SO₄⇒Al₂(SO₄)₃+ 6NH₄Cl
MW AlCl₃ :133,34 g/mol
MW (NH₄)₂SO₄ : 132,14 g/mol
MW Al₂(SO₄)₃ : 342,15 g/mol
mol AlCl₃

mol (NH₄)₂SO₄

Limitng reactants (ratio mol : coefficient = the smaller)
AlCl₃ : (NH₄)₂SO₄ =

(NH₄)₂SO₄ ⇒ limiting reactants
So mol Al₂(SO₄)₃ from (NH₄)₂SO₄

mass Al₂(SO₄)₃

with 54.2% yield, the mass of Al₂(SO₄)₃
