Neo-pentane represents the Compound A while compound B is n-pentane.
After careful consideration we can say that compounds A and B are alkanes and also isomers of pentane. In chemistry, Isomers are defined as compounds having same empirical molecular formula but different structural formulas due to varying arrangement of atoms.
Now, as per the question statement, compound A gives a single monochlorination product upon heating with the molecule of chlorine i.e. Cl2 showing that the molecule is extremely symmetric. This molecule must be neo-pentane. Refer to image 1.
Similarly, Compound B forms 3 constitutional isomers after undergoing monochlorination. This compound must be n-pentane since three are 3 different types of carbon atoms in the structure. Refer to image 2.
If you need to learn more about neo-pentane click here:
brainly.com/question/20815247
#SPJ4
Answer:
moles = given mass/atomic mass
so H2O mass = 2 +16=18
so 12g of h2o= 12/16 = 3/4 moles
<h3>Answer:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
<h3>Solution:</h3>
According to Boyle's Law, " <em>The Volume of a given mass of gas at constant temperature is inversely proportional to the applied Pressure</em>". Mathematically, the initial and final states of gas are given as,
P₁ V₁ = P₂ V₂ ----------- (1)
Data Given;
P₁ = 500 mmHg
V₁ = 9.0 mL
P₂ = 750 mmHg
V₂ = ??
Solving equation 1 for V₂,
V₂ = P₁ V₁ / P₂
Putting values,
V₂ = (500 mmHg × 9.0 mL) ÷ 750 mmHg
V₂ = 6.0 mL
<h3>Result:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
Answer:
1. Fe is reduced
2. Mn is Oxidized
3. N is oxidized
Explanation:
<em>Check the image below:</em>
Reducing agent is an element or compound that loses an electron to an electron recipient in a redox chemical reaction. oxidizing agent is a substance that has the ability to oxidize other substances — in other words to accept their electrons.