Answer:
boron has an atomic mass of 10.810 amu consists of two isotopes.
Conservation of mass can be checked in an experiment . There are three steps to do it in a best way:
1. Weigh all the equipment and materials required in the experiment before the experiment.
2. Avoid spillage and evaporation during the experiment.
3. Weigh all the equipment and materials after the experiment.
If the mass is conserved then weight from step 1 is equal to weight from step 3.
We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal
Carbon carbon triple bonds