Answer:
20 Hz, 20000 Hz
0.0166 m, 16.6 m
Explanation:
The minimum frequency that a human ear can hear is 20 Hz
The maximum frequency that a human ear can hear is 20000 Hz.
v = Velocity of sound = 332 m/s
Wavelength is given by

The longest wavelength that can be heard by the human ear is 16.6 m

The shortest wavelength that can be heard by the human ear is 0.0166 m.
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
Answer: When rubbing a balloon with a wool cloth, it puts negative charges on the balloon. Negative charges attract to positive charges. If a balloon is not rubbed with the wool cloth, it has an equal amount of negative to positive charges, so it will attract to a rubbed balloon.