Now the width is w.
It's twice as long as wide, so now the length is 2w.
If the length is increased by 4 cm, the length will be 2w + 4.
The width is decreased by 3 cm, so the width will be w - 3.
The are of the new rectangle is 100 cm^2.
area = length * width
area = (2w + 4)(w - 3)
The area of the new rectangle is 100, so we get
(2w + 4)((w - 3) = 100
2w^2 - 6w + 4w - 12 = 100
2w^2 - 2w - 112 = 0
w^2 - w - 56 = 0
(w - 8)(w + 7) = 0
w - 8 = 0 or w + 7 = 0
w = 8 or w = -7
A width cannot be negative, so discard w = -7.
w = 8
The width is 8 cm.
The length is twice the width, so the length is 16 cm.
X² + x - 12 / x² - x - 20 ÷ 3x² - 24x + 45 / 12x² - 48x - 60
x² + x - 12 / x² - x - 20 * 12x² - 48x - 60 / 3x² - 24x + 45
<u>(x² + x - 12)(12x² - 48x - 60)</u>
(x² - x - 20)(3x² - 24x + 45)
<span><u>12x^4 - 48x³ - 60x² + 12x³ - 48x² - 60x - 144x² + 576x + 720</u>
</span>3x^4 - 24x³ + 45x² - 3x³ + 24x² - 45x - 60x² + 480x - 900
<span>
<u>12x^4 - 48x³ + 12x³ - 60x² - 48x² - 144x² - 60x + 576x + 720</u></span>
3x^4 - 24x³ - 3x³ + 45x² + 24x² - 60x² - 45x + 480x - 900
<u>12x^4 - 36x³ - 252x² + 516x + 720</u>
3x^4 - 27x³ + 9x² + 435x - 900
<u>12(x^4 - 3x³ - 21x² + 43x + 60) </u>
3(x^4 - 9x³ + 3x² + 145x + 300)
<u>4(</u><span><u>x^4 - 3x³ - 21x² + 43x + 60) </u>
</span><span> (x^4 - 9x³ + 3x² + 145x + 300)</span>
Answer:the answer should be c
Step-by-step explanation:So, the 11 is an exponent. That means that the problem can be written as 11 x 7/4 so it should be c.
(−2h+9)(9h−2)
-18h^2 + 4h + 81h - 18
Answer: -18h^2 + 85h - 18