Torque is equal position vector times (r) times force vector
(F). Since F= 10 N and r = 0.1 m, so the
torque is equal to (10 N) x ( 0.1 m) = 1Nm. The direction of the torque would
be into the screen, clockwise rotation.
Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
Answer:
Tension in the string will increase
Explanation:
As we know that tension in the string at any angle with the vertical is given as

now we have

also we know that
angular speed of the stone is directly depending on the time period of the motion
so it is given as

since the frequency of the revolution is increased from n = 1 rev/s to 2 rev/s
so the angular speed would be doubled
So here we can say that
tension in the string will increase when we will increase the frequency of revolution.