I know for a fact the answer is D. the distance traveled by the wave during one full cycle
Answer:
Convection is the heat transfer due to the bulk movement of molecules within fluids such as gases and liquids, including molten rock. Condensation is the process by which water vapor in the air is changed into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds. These clouds may produce precipitation, which is the primary route for water to return to the Earth's surface within the water cycle.
Explanation:
Their a difference....... A huge One
Answer:
The final pressure of the whole system is 34.80 atm.
Explanation:
Given that,
Volume = 45.0 ml
Volume of first bulb = 77.0 mL
Pressure = 8.89 atm
Volume of second bulb = 250 mL
Pressure = 2.82 atm
Volume of third bulb = 21.0 mL
Pressure = 8.42 atm
We need to calculate the final pressure of the whole system
Using formula of pressure

Where,
= pressure of first bulb
= pressure of second bulb
= pressure of third bulb
= initial pressure of tube
= Volume of first bulb
=Volume of second bulb
= Volume of third bulb
= Initial volume of tube
Put the value into the formula



Hence, The final pressure of the whole system is 34.80 atm.
de Broglie wavelength (λ) is given by the equation
λ = h/p
where h=Planck’s constant whose value is 6.62 x 10^(−34) joule-seconds and
p = momentum of the particle(here electron)
In terms of kinetic energy(E) momentum(p) can be written as,
p=(2mE)^1/2
where m=mass of the particle.
Hence λ becomes
1 λ = h(2mE)^-1/2
Given here, E = 13.6 eV = 13.6×1.6×10^-19 joule
m(mass of electron)= 9.1×10^-31 kg
Putting these values in equation (1) we get ,
λ =0.332×10^(-9) meter
=3.32×10^(-10) meter
=3.32 Å
Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).