The loss of matter is called the mass defect. The missing matter is converted into energy. You can actually calculate the amount of energy produced during a nuclear reaction with fairly simple equation developed by Albert Einstein; E = mc^2. In this equation, E is the amount of energy produced, m is the missing mass, or the mass defect, and c is the speed of light, which is a rather large number. The speed of light is squared, making that part of the equation a very large number that, even when multiplied by a small amount of mass, yields a large amount of energy.
Answer:
a. They will be tie
b. Win the wood cylinder
Explanation:
a.
The both cylinders will reach the bottom at the same time notice the relation in the equation in indepent of the length and both have the same radius and the same rotational inertia.


So both will be tie
b.

The acceleration of the wood cylinder is larger than the acceleration of the brass cylinder so the cylinder of wood will reach the bottom first

So the wood win the race
Answer:
Explanation:
Let the equilibrium position of third charge be x distance from q₁.
Force on third charge due to q₁
= 9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x²
Force on third charge due to q₂
= 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
Both the force will act in opposite direction and for balancing , they should be equal.
9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x² = 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
5 / x² = 2 / ( .4 - x )²
Taking square root on both sides
2.236 / x = 1.414 / .4 - x
2.236 ( .4 - x ) = 1.414 x
.8944 - 2.236 x = 1.414 x
.8944 = 3.65 x
x = .245 m
24.5 cm
So the third charge should be at a distance of 24.5 cm from q₁ .
Answer:
0.3659
Explanation:
The power (p) is given as:
P = AeσT⁴
where,
A =Area
e = transmittivity
σ = Stefan-boltzmann constant
T = Temperature
since both the bulbs radiate same power
P₁ = P₂
Where, 1 denotes the bulb 1
2 denotes the bulb 2
thus,
A₁e₁σT₁⁴ = A₂e₂σT₂⁴
Now e₁=e₂
⇒A₁T₁⁴ = A₂T₂⁴
or

substituting the values in the above question we get

or
=0.3659