Answer:
If a certain cone with a height of 9 inches has volume V = 3πx2 + 42πx + 147π, what is the cone’s radius r in terms of x?
Step-by-step explanation:
V = 3πx2 + 42πx + 147π
V=3π(x2 + 14x +49)
9.42(x2 + 14x +49)
9.42(x2 + 14x +14) -14 + 49= 0
9.42(x + 7)^2 + 35= 0
9.42(9.42(x + 7)^2 = - 35)9.42
(x + 7)^2 = - 35/9.42)
√(x + 7)^2=√- 35/9.42
x + 7 = - 1.927
x= - 1.927 - 7
x= - 8.927
V = 3π(- 8.927)^2 + 42π(- 8.927) + 147π
V=750.69 - 1177.29 + 461.58
<u>V=34.98</u>
h= 9 inches
V = 13πr2h
34.98 = 13(3.14) (r^2) (h)
34.98 = 40.82 (r^2) 9
34.98 = 367.38 r^2
34.98/ 367.38 = 367.38 r^2/ 367.38
0.095= r^2
Answer:
4
Step-by-step explanation:
1) drawing a line straight
2) drawing 2 lines diagonally
3) drawing 1 line like this -----
Answer:
x = 60
Step-by-step explanation:
The sum of exterior angles in a rectangle is equal to 360
so to find the value of x we need to use all given values and write an equation:
x + 2x + x + 2x = 360 add like terms
6x = 360 divide both sides by 6
x = 60
Answer:
x ---- y
1 ---- 3
4 ---- 12
6 ---- 18
Step-by-step explanation:
Given

Required
Create a table that represents this scenario
Because x represents time, x can not be negative. So, the domain of x is:

Assume 

Assume x = 4

Assume x = 6

Hence, the table is:
x ---- y
1 ---- 3
4 ---- 12
6 ---- 18