Answer:
n = 2/3
Step-by-step explanation:
2m - 3n = 6
– 2m + 6n = 12
<u>____-____-___</u>
-9n = -6
n = -6/-9
n = 2/3
Hence, the value of n in the given equations is 2/3.
Answer:
This isn't the best worded question but from what I understand a larger sample size decreases the margin of error. If he would like a more accurate answer a larger sample size of the viewers will give more accurate answers.
Step-by-step explanation:
Answer:
Step-by-step explanation:
Simplifying
2x + 13 = 0
Reorder the terms:
13 + 2x = 0
Solving
13 + 2x = 0
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-13' to each side of the equation.
13 + -13 + 2x = 0 + -13
Combine like terms: 13 + -13 = 0
0 + 2x = 0 + -13
2x = 0 + -13
Combine like terms: 0 + -13 = -13
2x = -13
Divide each side by '2'.
x = -6.5
Simplifying
x = -6.5
Answer:
C
Step-by-step explanation:
Calculate AC using Pythagoras' identity in ΔABC
AC² = 20² - 12² = 400 - 144 = 256, hence
AC =
= 16
Now find AD² from ΔACD and ΔABD
ΔACD → AD² = 16² - (20 - x)² = 256 - 400 + 40x - x²
ΔABD → AD² = 12² - x² = 144 - x²
Equate both equations for AD², hence
256 - 400 + 40x - x² = 144 - x²
-144 + 40x - x² = 144 - x² ( add x² to both sides )
- 144 + 40x = 144 ( add 144 to both sides )
40x = 288 ( divide both sides by 40 )
x = 7.2 → C
Answer:
20 m by 10 m
Step-by-step explanation:
let w be width and l be length , then
2(l + w) = 60 ( divide both sides by 2 )
l + w = 30 ( subtract w from both sides )
l = 30 - w → (1)
lw = 200 → (2)
Substitute l = 30 - w into (2)
w(30 - w) = 200 ← distribute parenthesis on left side
30w - w² = 200 ( subtract 200 from both sides )
30w - w² - 200 = 0 ( multiply through by - 1 )
w² - 30w + 200 = 0 ← in standard form
(w - 10)(w - 20) = 0 ← in factored form
Equate each factor to zero and solve for w
w - 10 = 0 ⇒ w = 10
w - 20 = 0 ⇒ w = 20
Substitute these values into (1)
l = 30 - 10 = 20
l = 30 - 20 = 10
dimensions of field is 20 m by 10 m