Answer: B and D
Step-by-step explanation:
First, solve the terms inside of the parenthesis. As a general rule, whenever you multiply two terms that have the same base, you can add their exponents.
Applying this rule, the base in the problem is 6, and the exponents are 3 and -4. The sum of 3 and -4 leaves -1. Therefore, this is one of our solutions:

When you have an exponential term raised to another exponent, you can simply multiply the exponents. In the previous solution given above, multiply -1 and -3 to get 3. Therefore our second solution is:

Answer:
x = (-12/7 , 0)
y= (0,4)
Step-by-step explanation:
Plug y=0 into the equation and solve the resulting equation 7x=−12 for x
7x = -12
/7 /7
x = -12/7 and y =0
Plug x=0 into the equation and solve the resulting equation −3y=−12 for y
-3y = -12
/-3 -3
Y = 4 and X = 0
Answer:
The answer on A P E X is bal(132)
Part A
1 day = 1/4 hours of practice
7 days = 7/4 hours of practice (multiply both sides by 7)
1 week = 7/4 hours of practice
1 week = (4+3)/4 hours of practice
1 week = (4+3)/4 hours of practice
1 week = (4/4)+(3/4) hours of practice
1 week = 1+(3/4) hours of practice
1 week = 1 & 3/4 hours of practice
side note: 1 & 3/4 = 1.75
=======================================
Part B
Take the result from part A, and multiply it with 60
So we'll have 60 times 1&3/4 on the left side on the first line, then 60*(1+3/4) on the right side of this same line.
The rest of the lines look like this
(60*1) + (60*3/4)
60 + 60*3/4
60 + 180/4
60 + 45
105 minutes
5
Answer:
1050
Step-by-step explanation:
Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.
There is a easier method.
<em>E.g</em><em>:</em><em> </em><em> </em><em>Natural</em><em> </em><em>N</em><em>umbers</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>N</em><em>t</em><em>h</em><em> </em><em>Number</em><em>.</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>as</em><em> </em><em>adding</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Nth</em><em> </em><em>Numbers</em><em> </em><em> </em><em>to a</em><em> </em><em>multiple</em><em> </em><em>of</em><em> </em><em>that</em><em> </em><em>Nth</em><em> </em><em>Term</em><em>.</em><em> </em><em>For</em><em> </em><em>example</em><em>,</em><em> </em><em>let</em><em> </em><em>say</em><em> </em><em>we</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>numbers</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em>.</em><em> </em><em>We</em><em> </em><em>know</em><em> </em><em>that</em><em> </em><em>4</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>4</em><em>/</em><em>2</em><em>=</em><em>2</em><em>.</em><em> </em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>Nth</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>2</em><em> </em><em>to</em><em> </em><em>4</em><em>.</em><em> </em><em>4</em><em>+</em><em>2</em><em>=</em><em>6</em><em>.</em><em> </em><em>And</em><em> </em><em>6</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>6</em><em>/</em><em>2</em><em>=</em><em>3</em><em>.</em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>call</em><em> </em><em>this</em><em> </em><em>a</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em>.</em><em> </em><em>A</em><em> </em><em>series</em><em> </em><em>which</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>pattern</em><em> </em><em>of</em><em> </em><em>adding</em><em> </em><em>a</em><em> </em><em>common</em><em> </em><em>difference</em>
<em>Back</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>problem</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em> </em><em>formula</em><em>,</em>
<em>
</em>
<em>Where</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>in</em><em> </em><em> </em><em>our</em><em> </em><em>sequence</em><em>.</em><em> </em><em>Z1</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>fist</em><em> </em><em>term</em><em> </em><em>of</em><em> </em><em>our</em><em> </em><em>series</em><em>.</em><em> </em><em> </em><em>ZN</em><em> </em><em>is</em><em> </em><em>our</em><em> </em><em>last</em><em> </em><em>term</em><em>.</em><em> </em><em>And</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em>
<em>The</em><em> </em><em>first</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>5</em><em>,</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>being</em><em> </em><em>added</em><em> </em><em>is</em><em> </em><em>2</em><em>0</em><em> </em><em>because</em><em> </em><em>1</em><em>0</em><em>0</em><em>/</em><em>5</em><em>=</em><em>2</em><em>0</em><em>.</em><em> </em><em>The</em><em> </em><em>last</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>.</em>
<em>
</em>
<em>
</em>
<em>
</em>