Answer:
c. turn downward
Explanation:
From the information given:
To find the tendency of the sander;
We need to apply the right-hand rule torque; whereby we consider the direction of the flywheel, the direction at which the torque is acting, and the movement of the sander toward the right.
Since the flywheel of the sander is in counterclockwise movement, hence the torque direction will be outward placing on the wall. However, provided that the movement of the sander is toward the right, then there exists an opposite force that turns downward which showcases the tendency in the sander is downward.
Answer:
No, distance is more important.
Answer:
14.49 g/cm²
Explanation:
I = Io e^-(ux)
Where:
I = 573
Io = 1045
x = 0.3 inches and
rho = 11.4g/cm^3
Using the conversion constant
1 inch = 2.54 cm;
0.3 inches = 0.3 * 2.54 cm
0.3 inches = 0.762 cm
I/Io = e^-(ux), or say
Io/I = e^(ux), taking the In of both sides
ln(Io/I) = ux, making u subject of formula
u = 1/x * ln(Io/I)
u = 1/0.762 * ln(1045/573)
u = 1.312 * 0.6
u = 0.787
Next, we say that
u/rho = 0.7872/11.4 = 0.069
And finally, we make
1/(u/rho) to be our final answer
Inverse of the answer is = 14.49 g/cm²
Therefore, the um^-1 in g/cm^2? is 14.49
Answer:
Change in potential energy is 700.7 J.
Explanation:
Given:
Mass of the object is,
kg
Height to which the object is raised above his head,
m
Acceleration due to gravity is,
m/s²
We know that for a mass
raised to a height
, the change in potential energy is given as:
, where, 
Now, plug in the given values and solve.

Therefore, the change in the potential energy is 700.7 J.
The mass of the ball is 1.55 kg and its change in momentum is 10 kgm/s.
<h3>What is momentum of a body?</h3>
The momentum of a body is the product of the mass and velocity of the body.
- Momentum = mass * velocity
Mass of the ball = momentum/velocity
Mass of the ball = 3.29 / 2.11 = 1.55 kg
The change in momentum of the body or Impulse = force * time
Change in momentum of the body = 5.00 * 2.00 = 10 kgm/s
Therefore, the momentum of a body depends on its mass and velocity.
Learn more about momentum at: brainly.com/question/1042017
#SPJ1