Answer:

Explanation:
from the ideal gas law we have
PV = mRT


HERE R is gas constant for dry air = 287 J K^{-1} kg^{-1}


We know by ideal gas law



for m_2



WE KNOW
PV = mRT
V, R and T are constant therefore we have
P is directly proportional to mass




During the daytime, I have mostly line symmetry.
During the night, I often have almost spherical symmetry.
Answer:
Explanation:
velocity of sound in air at 20⁰C is 343 m /s
velocity of sound in water at 20⁰C is 1481 m /s
The wavelength of the sound is 2.86 m in the air so its frequency
= 343 / 2.86 = 119.93 .
This frequency of 119.93 will remain unchanged in water .
wavelength in water = velocity in water / frequency
= 1481 / 119.93
= 12. 35 m .
Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>