Explanation:
Large electrical shifting magnets have concentrated retaining strength to lift dense, ferric objects and a deep-reaching magnetization. An immensely useful materials management technique is these electromagnetic rises.
Answer:

Explanation:
Given data
Length of tube L=0.632 m
Speed of sound v=344 m/s
To find
Fundamental frequency f
Solution
The fundamental frequency of the tube can be given as:

We will hear the sound of siren of frequency 1553.4606 Hz.
<h3>What is Doppler Effect?</h3>
The apparent change in wave frequency brought on by the movement of a wave source is known as the Doppler effect. When the wave source is coming closer and when it is moving away, the perceived frequency changes. The Doppler effect explains why we hear a passing siren's sound changing in pitch.
according to Dopplers Effect,
![f'=[\frac{v + v_{0} }{v - v_{s} } ]f](https://tex.z-dn.net/?f=f%27%3D%5B%5Cfrac%7Bv%20%2B%20v_%7B0%7D%20%7D%7Bv%20-%20v_%7Bs%7D%20%7D%20%5Df)
![f'= [\frac{700+68.1}{700-94.8} ]* 1224](https://tex.z-dn.net/?f=f%27%3D%20%5B%5Cfrac%7B700%2B68.1%7D%7B700-94.8%7D%20%5D%2A%201224)

the frequency would be 1553.4606 Hz.
to learn more about Doppler Effect go to - brainly.com/question/9165991
#SPJ4
<span>10 times as much. Since F=m*a, and a is constant, the only thing that affects force is the mass.
In response to the below answer, the acceleration due to gravity does not change. The force due to gravity definitely DOES change depending on the mass of the object. Since the force is what the problem asks for, the answer is 10</span>
The question is asking to calculate the tension that the string has to adjust the string so that when vibrating in its second overtone, it produces sound of wavelength of 0.761m, base on my calculation, the calculation must be done by the formula of <span>v=λf</span><span>., I hope this would help </span>