Answer:

Explanation:
Since all the four charges are equidistant from the position of Q
so here we can assume this charge distribution to be uniform same as that of a ring
so here electric field due to ring on its axis is given as

here we have
x = b
and the radius of equivalent ring is given as the distance of each corner to the center of square

now we have

so the force on the charge is given as


The attraction of an object to something else with mass. What is the solar
system? The solar system is the alignment of planets around the sun. All the planets are in orbit around the sun. Our Solar System There are also Asteroids, comets, moons, and other forms of matter throughout space So What is the major role of gravity in our solar system? Holding Everything In Place. Without gravity a lot of things
<span>would go wrong. If there was no gravitational force on planets, people would float off into the sky.</span>
For electrical resistance, the unit is Ohm. The symbol is capital greek O.
Under general relativity, there is no 'before the Big Bang'. The problem is that time is itself a part of the universe and is affected by matter and energy. Because of the huge densities just after the Big Bang, time itself is warped in such a way that it cannot go back before that event. It is somewhat like asking what is north of the north pole.
The conservation of matter and energy states that the total amount of mass and energy at one time is the same at any other time. Notice how time is a crucial part of this statement. To even talk about conservation laws, you have to have time.
The upshot is that the Big Bang did not break the conservation laws because time itself is part of the universe and started at the Big Bang and because the conservation laws need to have time in their statements.
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.