1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mafiozo [28]
3 years ago
12

Amanda's gross annual salary is $62,112 what is the maximum amount of rent she can afford to pay

Mathematics
1 answer:
abruzzese [7]3 years ago
7 0
Answer is 1866 dollars
You might be interested in
Evaluate 5r-8.35s when r=12 and s=4
balu736 [363]

Answer: 26.6

Step-by-step explanation:

r = 12 5(12) = 60 | s = 4 8.35(4) = 33.4 | Now subtract both total number = 33.4 - 60 = 26.6

7 0
3 years ago
Solve for x the rest of the question is in the png
zvonat [6]

Answer:

33.18

Step-by-step explanation:

Use law of sines.

x / sin(65°) = 21 / sin(35°)

x = 21 sin(65°) / sin(35°)

x ≈ 33.18

3 0
3 years ago
Find the perimeter. Round to the nearest whole number.<br> 15 is c and 30 is a)
ziro4ka [17]

Answer:

45

Step-by-step explanation:

Hope this helps.

8 0
3 years ago
Ryan has a $500 bond with a 6.5% coupon. How much interest will Ryan
oee [108]
D. Is the correct answer
3 0
3 years ago
Read 2 more answers
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
Other questions:
  • Find the solution to the system of equations.<br><br> y= 2x + 3<br><br> y= -3x + 3
    12·1 answer
  • (3.2x10^4)(1.4x10^2)
    11·2 answers
  • I need help on the Wednesday column, question 1, letter b.
    14·2 answers
  • Need help step by step to find the total area thanks
    6·1 answer
  • How far is a million inches in miles
    12·1 answer
  • You can raise $48 walking a mile. What is the rate of raising money
    10·2 answers
  • Do you find this with synthetic and long divison?
    12·1 answer
  • out of 25 teacher 16 are married and 15 are woman ,if 6 of the man are not married ,how many woman are not married​
    11·2 answers
  • HELPPPP I NEED HELPPPPP
    6·2 answers
  • Evaluate -1 - [-z] where z = -2
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!