Answer:
h2 = 0.092m
Explanation:
From a balance of energy from point A to point B, we get speed before the collision:
Solving for Vb:

Since the collision is elastic, we now that velocity of bead 1 after the collision is given by:

Now, by doing another balance of energy from the instant after the collision, to the point where bead 1 stops, we get the distance it rises:
Solving for h2:
h2 = 0.092m
Draw a diagram to illustrate the problem as shown below.
The vertical component of the launch velocity is
v = (8.5 m/s)*sin30° = 4.25 m/s
The horizontal component of the launch velocity is
8.5*cos30° = 7.361 m/s
Assume that aerodynamic resistance may be ignored.
Because the horizontal distance traveled is 19 m, the time of travel is
t = 19/7.361 = 2.581 s
The downward vertical travel is modeled by
h = (-4.25 m/s)*(2.581 s) + 0.5*(9.8 m/s²)*(2.581 s)²
= 21.675 m
Answer: The height is 21.7 m (nearest tenth)
Neither of those questions makes sense, and I believe that you should not waste your time worrying about them.
#61 gives you a lot of information about a ball, and then asks a question about a glove.
#62 gives a mysterious equation, doesn't tell you what either of the variables represents, and then asks for a quantity without ever telling us how that quantity is related to the equation.
Personally, my response to both questions would be "Insufficient information given".