A liquid becomes a solid when energy is removed. The energy content decreases, and the speed of the particles decrease.
To solve this problem we will apply the concepts related to the thermal efficiency given in an engine of the Carnot cycle. Here we know that efficiency is given under the equation

Where,
Temperature of Cold Body
Temperature of Hot Body
= Efficiency
According to the statement our values are:


Replacing we have that




Therefore the temperature of the heat source is 300K
Answer:
I1 = 2/5 M1 R^2 for a sphere about its center
I2 = 2/5 M2 (2 R)^2 = 2/5 M2 R^ * 4 = 8/5 M2 R^2
Remember that M2 is greater than M1 by a factor 0f 2^3 = 8
Then I2 exceeds I1 by a factor of 32
Answer:
5.5 km
Explanation:
First, we convert the distance from km/h to m/s
910 * 1000/3600
= 252.78 m/s
Now, we use the formula v²/r = gtanθ to get our needed radius
making r the subject of the formula, we have
r = v²/gtanθ, where
r = radius of curvature needed
g = acceleration due to gravity
θ = angle of banking
r = 252.78² / (9.8 * tan 50)
r = 63897.73 / (9.8 * 1.19)
r = 63897.73 / 11.662
r = 5479 m or 5.5 km
Thus, we conclude that the minimum curvature radius needed for the turn is 5.5 km
Answer:
160m/s
Explanation:
The speed of a wave is related to its frequency and wavelength, according to this equation:
v=f ×λ