Answer:
The time for final 15 cm of the jump equals 0.1423 seconds.
Explanation:
The initial velocity required by the basketball player to be able to jump 76 cm can be found using the third equation of kinematics as

where
'v' is the final velocity of the player
'u' is the initial velocity of the player
'a' is acceleration due to gravity
's' is the height the player jumps
Since the final velocity at the maximum height should be 0 thus applying the values in the above equation we get

Now the veocity of the palyer after he cover'sthe initial 61 cm of his journey can be similarly found as

Thus the time for the final 15 cm of the jump can be found by the first equation of kinematics as

where symbols have the usual meaning
Applying the given values we get

Answer:
- a change in color
- the formation of a precipitate
- the formation of bubbles
Explanation:
In a chemical reaction, there is always a rearrangement of atoms within the molecules of reactants to form new products. Such a change is different from changes in the physical form of molecules, e.g. shape.
Thus, according to this criteria, only three options are correct in the given question. A change in color is definitely an indication of chemical reaction because the emission of light before and after cannot be changed unless molecules are rearranged to form a new chemical. Likewise, precipitates form when a reaction takes place between chemically dissolved molecules to form less or not dissolvable compounds. In the end, the configuration of bubbles also indicates that the reaction has taken place because new gases are being released.
On the other hand, change in shape is a physical change because the composition doesn't need to also been changed. An example is the ice formation from water. Same is the case with "change of clear liquid to cloudy" because the addition of non-reactive substances could change the nature of liquid to cloudy however the reaction doesn't need to have taken place.
Answer:



Explanation:
Given
at 
Point: 
,
-- Missing Information
Required
Determine the parametric equations

Differentiate with respect to t

Let t = 1 (i.e
)





To solve for x, y and z, we make use of:

This implies that:

So, we have:


By comparison:

Divide by i

Divide by j


Divide by k

Hence, the parametric equations are:



<span>Passive Transport Passive transport is the movement of molecules across the cell membrane and does not require energy. It is dependent on the permeability of the cell membrane. There are three main kinds of passive transport - Diffusion, Osmosis and Facilitated Diffusion</span>