Answer: see the graph attached (straight line, passing through the origin and positive slope).
Justification:1)
Kinetic energy and temperature are in direct proportion. That means:
i) Being kinetic energy y and temperature x:
y α xii) That implies:
y = kx,where k is the constant of proportionality.
iii) The graph is a
line that passes through the origin and has positive slope k (k = y / x).2) The proportional relationship between kinetic energy (KE) and temperature (T) is shown by the
Boltzman law, which states:
Average KE = [3 / 2] KT, where K is Boltzman's constant, whose graph is of the form shown in the figure attached.
Answer:
why compasses point towards the north and south poles of the earth.
Explanation:
hope it helps!!
The resulting change in momentum of the system will be +18.6 Ns. The momentum is conserved.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
The given data in the problem is;
m is the mass =6.0 kg
t is the time interval=2 second
From Newton's second law;

From the graph;

The change in the momentum is;

Hence, the resulting change in momentum of the system will be +18.6 Ns.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ1
The final temperature of the system is 32.5°
we know, H = mcT
where, H = Heat content of the body
m = Mass,
c = Specific heat
T = Change in temperature
According to to the Principle of Calorimetry
The net heat remains constant i.e.
⇒ the heat given by water = heat accepted by the aluminum container.
⇒ 330 x 1 x (45 - T) = 855 x

x (T - 10)
⇒ 14,850 - 330T = 183.21T - 1832
⇒ - 513.21 T = - 16682
or T = 32.5°
Answer:
The value of change in internal energy of the gas = + 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.