Answer:
(b) the point charge is moved outside the sphere
Explanation:
Gauss' Law states that the electric flux of a closed surface is equal to the enclosed charge divided by permittivity of the medium.

According to this law, any charge outside the surface has no effect at all. Therefore (a) is not correct.
If the point charge is moved off the center, the points on the surface close to the charge will have higher flux and the points further away from the charge will have lesser flux. But as a result, the total flux will not change, because the enclosed charge is the same.
Therefore, (c) and (d) is not correct, because the enclosed charge is unchanged.
A scientific journal article that is peer reviewed. This is because it is more likely not have factual information and sources to that information.
It's the second one that the answer
Answer:
The block+bullet system moves 4 m before being stopped by the frictional force.
Explanation:
Using the law of conservation of llinear momentum and the work energy theorem, we can obtain this.
According to Newton's second law of motion
Momentum before collision = Momentum after collision
Momentum before collision = (0.02×400) + 0 (stationary block)
Momentum before collision = 8 kgm/s
Momentum after collision = (2+0.02)v
8 = 2.02v
v = 3.96 m/s.
According to the work-energy theorem,
The kinetic energy of the block+bullet system = work done by Friction to stop the motion of the block+bullet system
Kinetic energy = (1/2)(2.02)(3.96²) = 15.84 J
Work done by the frictional force = F × (distance moved by the force)
F = μmg = 0.2(2.02)(9.8) = 3.96 N
3.96d = 15.84
d = (15.84/3.96) = 4 m
Answer:
18 1/2 po
Explanation:
yan po answer correct me if im wrong